ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-03-124-134

УДК: 535.015

Method for achieving magneto-induced non-reciprocity in resonant silicon waveguides when their mirror symmetry is violated

For Russian citation (Opticheskii Zhurnal):

Юхтанов Н.Г., Рыбин М.В. Способ достижения магнето-индуцированной невзаимности в резонансных кремниевых волноводах при нарушении их зеркальной симметрии // Оптический журнал. 2024. Т. 91. № 3. С. 124–134. http://doi.org/10.17586/1023-5086-2024-91-03-124-134

 

Iukhtanov N.G., Rybin M.V. Method for achieving magneto-induced non-reciprocity in resonant silicon waveguides when their mirror symmetry is violated [in Russian] // Optickhesii Zhurnal. 2024. V. 91. № 3. P. 124–134. http://doi.org/10.17586/1023-5086-2024-91-03-124-134

 

 

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Non-reciprocal phase shifters on a chip based on resonant silicon waveguides with an applied magnetic field perpendicular to the chip plane. Aim of study. Developing a method for achieving magneto-induced non-reciprocity in resonant silicon waveguides due to uncompensated integral transverse rotation of electric fields in volume by violating the mirror symmetry of waveguides and an applied external magnetic field in Voigt geometry. Method. Breaking the mirror symmetry of the waveguides, the effect of transverse rotation of the electric fields of the operating modes is observed. By applying a magnetic field in the Voigt geometry, a non-reciprocal phase accumulates when light propagates through the waveguide, which is calculated using stationary perturbation theory. Main results. Three designs of silicon waveguides have been proposed with broken mirror symmetry to create compact magneto-induced phase shift elements integrated on a chip. As a result of waveguide eigenfrequencies modeling in COMSOL Multiphysics, effective indicators of the integral transverse rotation of electric fields in one direction in silicon waveguides are obtained, which allows us to fold waveguides into a serpentine shape on a chip with an area of less than 1 mm2 according to the estimations of authors. Practical significance. Such nanostructures are based on commercially available silicon-on-insulator wafers with a standard thickness of 220 nm. The serpentine bending of the waveguides under study allows them to be used as on-chip non-reciprocal phase shifters. The proposed phase shifters are expected to be easily integrated into optoelectronic circuits due to compatibility with the standard complementary metal–oxide–semiconductor electronic technology. Moreover, the proposed technology is expected to be cheap due to the low price of neodymium magnets, which are used to create a stationary external magnetic field.

Keywords:

resonant waveguide, photonic integrated circuit, magneto-induced non-reciprocity, phase shifter, photonic crystal

Acknowledgements:
this work was supported by the Russian Science Foundation, project № 21-19-00677

OCIS codes: 230.0230

References:

1.         Absil P.P., Verheyen P., De Heyn P., et al. Silicon photonics integrated circuits: a manufacturing platform for high density, low power optical I/O’s // Optics Express. 2015. V. 23. № 7. P. 9369–9378. https://doi.org/10.1364/OE.23.009369

2.         Dongdong Yin, Xiaohong Yang, Tingting He, et al. InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits (Лавинные фотодетекторы на основе InGaAs/InAlAs, интегрированные с волноводными структурами «кремний на изоляторе») [на англ. яз.] // Оптический журнал. 2017. Т. 84. № 5. С. 80–85.

            Dongdong Yin, Xiaohong Yanlg, Tingting He, et al. InGaAs/InAlAs avalanche photodetectors integrated on silicon-on-insulator waveguide circuits // J. Opt. Technol. 2017. V. 84. P. 350‒354. https://doi.org/10.1364/JOT.84.000350

3.         Stadler B.J.H., Mizumoto T. Integrated magnetooptical materials and isolators: A review // IEEE Photonics Journal. 2013. V. 6. № 1. P. 1–15. https://doi.org/10.1109/JPHOT.2013.2293618

4.         Shoji Y., Mizumoto T. Silicon waveguide optical isolator with directly bonded magneto-optical garnet // Applied Sciences. 2019. V. 9. № 3. P. 609. https://doi.org/10.3390/app9030609

5.         Zhang Y., Du Q., Wang C., et al. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics // Optica. 2019. V. 6. № 4. P. 473– 478. https://doi.org/10.1364/OPTICA.6.000473

6.         Stadler B.J.H., Gopinath A. Magneto-optical garnet films made by reactive sputtering // IEEE Trans. on Magnetics. 2000. V. 36. № 6. P. 3957–3961. https://doi.org/10.1109/20.914347

7.         Stadler B.J.H., Vaccaro K., Yip P., et al. Integration of magneto-optical garnet films by metal-organic chemical vapor deposition // IEEE Trans. on Magnetics. 2002. V. 38. № 3. P. 1564–1567. https://doi.org/10.1109/20.999132

8.        Lira H., Yu Z., Fan S., Lipson M. Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip // Physical Review Letters. 2012. V. 109. № 3. P. 033901. https://doi.org/10.1103/PhysRevLett.109.033901

9.         Kittlaus E.A., Weigel P.O., Jones W.M. Low-loss nonlinear optical isolators in silicon // Nature Photonics. 2020. V. 14. № 6. P. 338–339. https://doi.org/10.1038/s41566-020-0640-y

10.       Kittlaus E.A., Jones W.M., Rakich P.T., et al. Electrically driven acousto-optics and broadband non-reciprocity in silicon photonics // Nature Photonics. 2021. V. 15. № 1. P. 43–52. https://doi.org/10.1038/s41566-020-00711-9

11.       Petrov A.Y., Jalas D., Krause M., et al. Nonreciprocal silicon waveguides and ring resonators with gyrotropic cladding // 7th IEEE Internat. Conf. Group IV Photonics. Beijing, China. September 1–3, 2010. P. 234–236. https://doi.org/10.1109/GROUP4.2010.5643368

12.       Jalas D., Hakemi N., Cherchi M., et al. Faraday rotation in silicon waveguides // 2017 IEEE 14th Internat. Conf. Group IV Photonics (GFP). Berlin, Germany. August 23–25, 2017. P. 141–142. https://doi.org/10.1109/GROUP4.2017.8082236

13.       Aers G.C., Boardman A.D. The theory of semiconductor magnetoplasmon-polariton surface modes: Voigt geometry // Journal of Physics C: Solid State Physics. 1978. V. 11. № 5. P. 945. https://doi.org/10.1088/0022-3719/11/5/015

14.       Kushwaha M.S., Halevi P. Magnetoplasmons in thin films in the Voigt configuration // Physical Review B. 1987. V. 36. № 11. P. 5960. https://doi.org/10.1103/PhysRevB.36.5960

15.       Rubinstein R.Y., Kroese D.P. Simulation and the Monte Carlo method. John Wiley & Sons, 2016. 432 p.

16.       Coles R.J., Price D.M., Dixon, J.E., et al. Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer // Nature Communications. 2016. V. 7. № 1. P. 11183. https://doi.org/10.1038/ncomms11183

17.       Piller H., Potter R.F. Faraday rotation near the band edge of silicon // Physical Review Letters. 1962. V. 9. № 5. P. 203. https://doi.org/10.1103/PhysRevLett.9.203

18.       Sakurai J.J. and Napolitano J. Modern quantum mechanics (2nd ed.). Addison Wesley, 2010. 570 p.

19.       Volkov I.A., Savelev R.S. Unidirectional coupling of a quantum emitter to a subwavelength grating waveguide with an engineered stationary inflection point // Physical Review B. 2021. V. 104. № 24. P. 245408. https://doi.org/10.1103/PhysRevB.104.245408

20.      Lee K.K., Lim D.R., Kimerling L.C., et al. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction // Optics Letters. 2001. V. 26. № 23. P. 1888–1890. https://doi.org/10.1364/OL.26.001888

21.       Vlasov Y.A., McNab S.J. Losses in single-mode silicon-on-insulator strip waveguides and bends // Optics Express. 2004. V. 12. № 8. P. 1622–1631. https://doi.org/10.1364/OPEX.12.001622

22.      Кузнецов И.В., Перин А.С. Исследование характеристик электрооптического модулятора в конфигурации интерферометра Маха–Цендера на основе тонких плёнок ниобата лития // Оптический журнал. 2023. Т. 90. № 2. С. 68–77. https://doi.org/10.17586/1023-5086-2023-90-02-68-77

            Kuznetsov I.V., Perin A.S. Mathematical modeling of the parameters of an electro-optic modulator in the Mach–Zehnder interferometer configuration based on thin lithium niobate films // J. Opt. Technol. 2023. V. 90. P. 93–97. https://doi.org/10.1364/JOT.90.000093