DOI: 10.17586/1023-5086-2024-91-03-23-31
УДК: 535.44
Generation of a second-order optical vortex in a polarization interferometer
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ryzhaya A.A., Iureva E.K., Evtushenko B.A., Safronov D.V., Sevryugin A.A., Shalymov E.V., Venediktov V.Yu., Sokolov A.L., Song Н. Generation of a second-order optical vortex in a polarization interferometer [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 3. P. 23–31. http://doi.org/10.17586/1023-5086-2024-91-03-23-31
Anastasia A. Ryzhaya, Ekaterina K. Iureva, Boris A. Evtushenko, Daniil V. Safronov, Alexander A. Sevryugin, Egor V. Shalymov, Vladimir Yu. Venediktov, Andrey L. Sokolov, and Hong Song, "Generation of a second-order optical vortex in a polarization interferometer," Journal of Optical Technology. 91(3), 147-151 (2024). https://doi.org/10.1364/JOT.91.000147
Subject of study. A method for generating an optical vortex and its analysis in far-field diffraction using rays reflected from a combination of two retroreflectors (cubic corner reflectors) with a special interference phase-shifting coating that are part of a polarization interferometer. When the cubic corner reflectors are positioned correctly relative to each other, a second-order optical vortex is formed. Aim of study. Experimental confirmation of the previously predicted theoretical possibility of obtaining an optical vortex in the near and far diffraction zones, as well as conducting their visual analysis. Method. The schemes created in this work make it possible to generate second-order optical vortices in the near and far diffraction zones. Main results. Schemes of installations for the formation of an optical vortex and its analysis are presented. The results show that the phase and polarization distributions of the obtained patterns correspond to theoretical studies. Practical significance. Optical vortices are used for micromanipulation and data transmission purposes. The proposed generation method, despite a number of limitations, can be useful in a number of tasks — in particular, when it is necessary to quickly turn on and off the vortex, when using non-monochromatic light, as well as when manipulating entangled photons.
structured light, optical vortex, retroreflectors, cubic corner reflectors, polarization of light, polarization interferometer, far field, far field diffraction pattern
OCIS codes: 260.3160, 050.4865
References:1. Rubinsztein-Dunlop H., Forbes A., Berry M.V., et al. Roadmap on structured light // J. Opt. 2017. V. 19. № 1. P. 013001. https://doi.org/10.1088/2040-8978/19/1/013001
2. Bliokh K.Y., Karimi E., Padgett M.J., et al. Roadmap on structured waves // J. Opt. 2023. V. 25. № 10. P. 103001. https://doi.org/10.1088/2040-8986/acea92
3. Sokolov A.L., Murashkin V.V. Retroreflective spatial-polarization interferometer // Appl. Opt. 2020. V. 59. № 32. P. 9912–9923. https://doi.org/10.1364/AO.40323
4. Ishchenko E.F., Sokolov A.L. Polarized optics [in Russian]. Moscow: FIZMATLIT Publ., 2019. 576 p.
5. Kotlyar V.V, Kovalev A.A., Nalimov A.G. Topological charge of optical vortices. Boca Raton: CRC Press, 2023. 301 p. https://doi.org/10.1201/9781003326304
6. Gavril'eva K.N., Mermoul A., Sevryugin A.A., et al. Detection of optical vortices using cyclic, rotational and reversal shearing interferometers // Opt. & Laser Technol. 2019. V. 113. P. 374–378. https://doi.org/10.1016/j.optlastec.2019.01.006
7. Sokolov A.L., Murashkin V.V., Akent’ev A.S., et al, Corner reflectors with interference dielectric coating [in Russian] // Quant. Electron. 2013. V. 43. № 9. P. 795–799.
8. Venediktov V.Yu., Gavril’eva K.N., Gudin Yu.S., et al. Polarization interferometer and structured light // Photonics Russia. 2022. V. 16. № 3. P. 226–234. https://doi.org/10.22184/1993-7296.FRos.2022.16.3.226.234