ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-03-32-43

УДК: 535.42, 53-155

Formation and practical implementation of a helical wavefront of radiation in the mid-infrared range

For Russian citation (Opticheskii Zhurnal):
Бударин А.С., Скворцов Л.А., Кузнецов Е.В., Силантьев И.В., Мяконьких А.В., Павлов А.Ю., Галиев Р.Р., Давлятшина А.Р., Аврамчук А.В., Хабибуллин Р.А. Формирование геликоидального волнового фронта излучения в среднем инфракрасном диапазоне // Оптический журнал. 2024. Т. 91. № 3. С. 32–43. http://doi.org/10.17586/1023-5086-2024-91-03-32-43

 

Budarin A.S., Skvortsov L.A., Kuznetsov E.V., Silantyev I.V., Miakonkikh A.V., Pavlov A.Yu., Galiev R.R., Davlyatshina A.R., Avramchuk A.V., Khabibullin R.A. Formation and practical implementation of a helical wavefront of radiation in the mid-infrared range [in Russian] // Optickhesii Zhurnal. 2024. V. 91. № 3. P. 32–43. http://doi.org/10.17586/1023-5086-2024-91-03-32-43

For citation (Journal of Optical Technology):

Anton S. Budarin, Leonid A. Skvortsov, Evgeniy V. Kuznetsov, Ilya V. Silantyev, Andrew V. Miakonkikh, Aleksandr Yu. Pavlov, Rinat R. Galiev, Asiya R. Davlyatshina, Alexander V. Avramchuk, and Rustam A. Khabibullin, "Formation and practical implementation of a helical radiation wavefront in the mid-infrared range," Journal of Optical Technology. 91(3), 152-158 (2024).  https://doi.org/10.1364/JOT.91.000152

Abstract:

Subject of study. Interaction of mid-infrared light with a metasurface based on silicon scattering elements on a sapphire substrate and its subsequent propagation in the far field. Aim of study. Development of the metasurface design, its manufacture and formation with its help of a vortex beam with a helicoidal wavefront in the medium-wave infrared range with measurement of the intensity profile of the converted radiation. Method. The Finite Difference Time Domain algorithm is used to calculate the characteristics of radiation scattering on a metasurface element. An algorithm of dynamic mode decomposition was applied to analyze the spatial spectrum of radiation obtained as a result of the passage of a plane wave through a plate with the selected design. For the manufacture of the metasurface, the following methods were used: plasma chemical vapor deposition, electron beam lithography, thermal evaporation, atomic layer deposition, reactive ion etching in inductively coupled plasma, anisotropic cryo etching. Main results. A metasurface design has been developed for the formation of a laser beam with a helicoidal wavefront in the medium-wave infrared range. The parameters of silicon scattering elements on a sapphire substrate have been determined using numerical modeling. The efficiency and characteristics of the spatial spectrum of the constructed metasurface are investigated. It is established that the energy fraction of the secondary harmonics decreases with the distance along the beam propagation. As a result of the work done, a vortex beam with an annular intensity distribution in the cross section was experimentally obtained in the middle IR range of the spectrum. Practical significance. The metasurface created in the course of work, including the process of its design and manufacturing technology, may be of potential interest for use in atmospheric optical communication lines based on quantum cascade lasers of the mid-infrared range of the spectrum with multiplexing orthogonal spatial modes.

Keywords:

helicoidal wavefront, metasurfaces, phase plates, spatial spectrum, mid-infrared range of the spectrum, spatial filters, quantum cascade lasers, free space optics

OCIS codes: 140.0140, 160.3918

References:
  1. Bliokh K.Y., Karimi E., Padgett M.J., et al. Roadmap on structured waves // J. Opt. 2023. V. 25. № 10. Р. 10300 https:// doi. org/10.1088/2040-8986/acea92
  2. Rubinsztein-Dunlop H., Forbes A., Berry M.V., et al. Roadmap on structured light // J. Opt. 2016. V. 19. № 1. Р. 013001. https://doi.org/10.1088/2040-8978/19/1/013001
  3. Forbes A., de Oliveira M., & Dennis M.R. Structured light // Nature Photonics. 2021. V. 15. № 4. P. 253–262. https://doi.org/10.1038/s41566-021-00780-4
  4. Petrov N.V., Sokolenko B., Kulya M.S., et al. Design of broadband terahertz vector and vortex beams: I. Review of materials and components // Light Adv. Manuf. 2022. V. l. № P. 1. https://doi.org/10.37188/lam.2022.043
  5. Soifer V.A., Korotkova O., Khonina S.N., et al. Vortex beams in turbulent media: Review // Comput. Opt. 2016. V. 40. № P. 605–624. https://doi.org/10.18287/2412-6179-2016-40-5-605-624
  6. Shen Y., Wang X., Xie Z., et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light: Sci. Appl. 2019. V. 8. № 1. P. 90. https://doi.org/10.1038/s41377-019-0194-2
  7. Zhu F., Huang S., Shao W., et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM) // Opt. Commun. 201 V. 396. P. 50. https://doi.org/10.1016/j.optcom.2017.03.023
  8. Shao W., Huang S., Liu X., et al. Free-space optical communication with perfect optical vortex beams multiplexing // Opt. Commun. 201 V. 427. P. 545. http://dx.doi.org/10.1016/j.optcom.2018.06.079
  9. Padgett M. and Bowman R. Tweezers with a twist // Nat. Photonics. 2011. V. l. № 5. P. 343. https://doi.org/10.1016/j.optcom.2018.06.079
  10. Yang Y., Ren Y., Chen M., et al. Optical trapping with structured light: A review // Adv. Photonics. 2021. V. 3. № 3. P. 03400. https://doi/1117/1.AP.3.3.034001
  11. Otte E., Denz C. Optical trapping gets structure: Structured light for advanced optical manipulation // Appl. Phys. Rev. 2020. V. 7. № 4. P. 041308. https://doi.org/10.1063/5.0013276
  12. Qiu X., Li F., Zhang W., et al. Spiral phase contrast imaging in nonlinear optics: Seeing phase objects using invisible illumination // Optica. 2018. V. 5. № 2. P. 208. https://doi.org/10.1364/OPTICA.5.000208
  13. Tamburini F., Anzolin G., Umbriaco G., et al. Overcoming the Rayleigh criterion limit with optical vortices // Phys. Rev. Lett. 2006. V. 97. № 16. P. 163903. https://doi.org/10.1103/PhysRevLett.97.163903
  14. Nicolas A., Veissier L., Giner L., et al. A quantum memory for orbital angular momentum photonic qubits // Nature Photonics. 20 V. 8. № 3. P. 234. https://doi.org/10.1038/nphoton.2013.355
  15. Vallone G., D’Ambrosio V., Sponselli A., et al. Free-space quantum key distribution by rotation-invariant twisted photons // Phys. Rev. Lett. 2014. V. 113. № 6. P. 060503. https://doi.org/10.1103/PhysRevLett.113.060503
  16. Aleksanyan A., Kravets N., Brasselet E. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve // Phys. Rev. Lett. 2017. V. 118. № 20. P. 203902. https://doi.org/10.1103/PhysRevLett.118.203902
  17. Berkhout G., Beijersbergen M. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects // Phys. Rev. Lett. 2008. V. 101. № 10. P. 100801. https://doi.org/10.1103/PhysRevLett.101.100801
  18. Lavery M., Speirits F., Barnett S.M., et al. Detection of a spinning object using light’s orbital angular momentum // Science. 2013. V. 34. № 6145. P. 537. https://doi.org/10.1126/science.1239936
  19. Kim I., Martins R., Jang J., et al. Nanophotonics for light detection and ranging technology // Nature Nanotechnol. 2021. V. 16. № 5. P. 508. https://doi.org/10.1038/s41565-021-00895-3
  20. Gianani I., Suprano A., Giordani T., et al. Transmission of vector vortex beams in dispersive media // Advanced Photonics. 20 V. 2. № 3. P. 036003. https://doi.org/10.1117/1.AP.2.3.036003
  21. Biton N., Kupferman J., Arnon S. OAM light propagation through tissue // Sci. Rep. 20 V. 11. № 1. P. 2407. https://doi.org/10.1038/s41598-021-82033-6
  22. Wang J. Advances in communications using optical vortices // Photonics Res. 2016. V. 4. № 5. P. B14. https://doi.org/10.1364/PRJ.4.000B14
  23. Zhu Z., Janasik M., Fyffe A., et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams // Nature Commun. 2021. V. 12. № 1. Р. 1666. https://doi.org/10.1038/s41467-021-21793-1
  24. Wang J., Liu J., Li S., et al. Orbital angular momentum and beyond in free-space optical communications // Nanophotonics. 2021. V. 11. № 4. P. 645. https://doi.org/10.1515/nanoph-2021-0527
  25. He C., Shen Y., Forbes A. Towards higher-dimensional structured light // Light: Sci. Appl. 2022. V. 11. № 1. P. 205. https://doi.org/10.1038/s41377-022-00897-3
  26. Willner A., Ren Y., Xie G., et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing // Philosoph. Trans. of the Royal Soc. A: Mathematical, Physical and Engineering Sci. 2017. V. 375. № 2087. P. 20150439. https://doi.org/10.1098/rsta.2015.0439
  27. Абрамов П.И., Бударин А.С., Кузнецов Е.В. и др. Квантово-каскадные лазеры в атмосферных оптических линиях связи: проблемы и перспективы // ЖПС. 2020. Т. 87. № 4. С. 515. https://doi.org/10.17586/1023-5086-2020-87-04-515-539

Abramov P., Budarin A., Kuznetsov E., et al. Quantum-cascade lasers in atmospheric optical communication lines: Challenges and prospects // J. Appl. Spectrosc. 2020. V. 87. № 4. P. 579. https://doi.org/10.1007/s10812-020-01041-y

  1. Hakl M., Lin Q., Lepillet S., et al. Ultrafast quantum-well photodetectors operating at 10 µm with a flat frequency response up to 70 GHz at room temperature // ACS Photonics. 2021. V. 8. № 2. P. 464. https://doi.org/10.1021/acsphotonics.0c01299
  2. Quinchard G., Mismer C., Hakl M., et al. High speed, antenna-enhanced 10.3 µm quantum cascade detector // Appl. Phys. Lett. 2022. V. 120. № 9. P. 091108. https://doi.org/10.1063/5.0078861
  3. Ferreira R. and Bastard G. Evaluation of some scattering times for electrons in unbiased and biased single- and multiplequantum-well structures // Phys. Rev. B. 1989. V. 40. P. 1074. https://doi.org/10.1103/PhysRevB.40.1074
  4. Meng B. and Wang Q.J. Theoretical investigation of injection-locked high modulation bandwidth quantum cascade lasers // Opt. Exp. 2012. V. 20. № 2. P. 1450. https://doi.org/10.1364/OE.20.001450
  5. Calvar A., Amanti M.I., Renaudat St-Jean, et al. High frequency modulation of mid-infrared quantum cascade lasers embedded into microstrip line // Appl. Phys. Lett. 2013. V. 102. № 18. P. 181114. https://doi.org/10.1063/1.4804370
  6. Pang X., Dely H., Schatz R., et al. 11 Gb/s LWIR FSO transmission at 9.6 µm using a directly-modulated quantum cascade laser and an uncooled quantum cascade detector // Opt. Fiber Commun. Conf. and Exhibition (OFC), IEEE. 2022. P. 1. https://doi.org/10.1364/OFC.2022.Th4B.5
  7. Yao Y., Shankar R., Kats M.A., et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators // Nano Lett. 2014. V. 14. № 11. P. 6526–6532. https://doi.org/10.1021/nl503104n
  8. Zeng B., Huang Z., Singh A., et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging // Light: Sci. Appl. 2018. V. 7. № 1. Р. 51. https://doi.org/10.1038/s41377-018-0055-4
  9. Liang G., Yu X., Hu X., et al. Mid-infrared photonics and optoelectronics in 2D materials // Mater. Today. 2021. V. 51. P. 294. https://doi.org/10.1016/j.mattod.2021.09.021
  10. Montesinos-Ballester M., Deniel L., Koompai N., et al. Mid-infrared integrated electrooptic modulator operating up to 225 MHz between 6.4 and 10.7 m wavelength // ACS Photonics. 2022. V. 9. № 1. P. 249. https://doi.org/10.1021/acsphotonics.1c01449
  11. Pirotta S., Tran, N.L., Jollivet A., et al. Fast amplitude modulation up to 1.5 GHz of mid-IR free-space beams at room-temperature // Nat. Commun. 2021. V. 12. P. 799. https://doi.org/10.1038/s41467-020-20710-2
  12. Dely H., Bonazzi T., Spitz O., et al. 10 Gbit s–1 free space data transmission at 9 µm wavelength with unipolar quantum optoelectronics // Laser Photonics Rev. 2022. V. 16. № 2. P. 2100414. https://doi.org/10.1002/lpor.202100414
  13. Capasso F., Sirtori C., and Cho A.Y. Coupled quantum well semiconductors with giant electric field tunable nonlinear optical properties in the infrared // IEEE J. Quantum Electron. 1994. V. 30. № 5. Р. 1313. https://doi.org/10.1109/3.303697
  14. Didier P., Dely H., Bonazzi T., et al. High-capacity free-space optical link in the midinfrared thermal atmospheric windows using unipolar quantum devices // Advanced Photonics. 2022. V. 4(5). Р. 056004. https://doi.org/10.11171.AP.4.5.056004
  15. Wang J., Yang J.Y., Fazal I., et al. Terabit free-space data transmission employing orbital angular momentum multiplexing // Nature Photonics. 2012. V. 6. № 7. P. 488. https://doi.org/10.1038/nphoton.2012.138
  16. Yu N., Capasso F. Flat optics with designer metasurfaces // Nature Materials. 2014. V. 13. P. 139. https://doi.org/10.1038/nmat3839
  17. Ahmed H., Kim H., Zhang Y., et al. Optical metasurfaces for generating and manipulating optical vortex beams // Nanophotonics. 2022. V. 11. № 5. Р. 941. https://doi.org/10.1515/nanoph-2021-0746
  18. Achouri K., Khan B.A., Gupta S., et al. Synthesis of electromagnetic metasurfaces: Principles and illustrations // arXiv preprint. 2015. arXiv: 1510.05997. https://doi.org/10.48550/arXiv.1510.05997
  19. Zhu L., Wang J. A review of multiple optical vortices generation: Methods and applications // Frontiers of Optoelectronics. 2019. V. 12. P. 52–68. https://doi.org/10.1007/s12200-019-0910-9
  20. Тонкаев П., Кившарь Ю.С. Высокодобротные диэлектрические Ми-резонансные наноструктуры (мини-обзор) // Письма в ЖЭТФ. 2020. Т. 112. № 10. С. 658. https://doi.org/10.31857/S123456782022005X

Tonkaev P., & Kivshar Y. High-Q dielectric mie-resonant nanostructures (brief review) // JETP Letters. 2020. V. 112. № 10. P. 615. https://doi.org/10.1134/S0021364020220038

  1. Yee K.S., Chen J.S. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations // IEEE Trans. Antennas and Propagation. 1997. V. 45. № 3. Р. 354. https://doi: 10.1109/8.558651
  2. Hu Y., Zhou Q., Fang X., et al. FDTD simulations of modulated metasurfaces with arbitrarily shaped meta-atoms by surface impedance boundary condition // Appl. Computational Electromagnetics Soc. J. (ACES). 2021. P. 1509. https://doi.org/10.13052/2021.ACES.J.361201
  3. Sun S., He Q., Hao J., et al. Electromagnetic metasurfaces: Physics and applications // Advances in Optics and Photonics. 2019. V. 11. № 2. Р. 380. https://doi.org/10.1364/AOP.11.000380
  4. Yee K.S., Chen J.S. The finite-difference time-domain (FDTD) and the finite-volume time-domain (FVTD) methods in solving Maxwell's equations // IEEE Trans. Antennas and Propagation. 1997. V. 45. № 3. Р. 354. https://doi: 10.1109/8.558651
  5. Li X., Fan Z. Controlling dispersion characteristic of focused vortex beam generation // Photonics. 2022. V. 9. № 3. P. 179. https://doi.org/10.3390/photonics9030179
  6. Jahani S., Jacob Z. All-dielectric metamaterials // Nature Nanotechnol. 2016. V. 11. № 1. P. 23. https://doi.org/10.1038/nnano.2015.304
  7. Arbabi A., Briggs R.M., Horie Y., et al. Efficient dielectric metasurface collimating lenses for mid-infrared quantum cascade lasers // Opt. Exp. 2015. V. 23. № 26. P. 33310. https://doi.org/10.1364/OE.23.033310
  8. Vahabzadeh Y., Chamanara N., Achouri K., et al. Computational analysis of metasurfaces // IEEE J. Multiscale and Multiphysics Computational Techniques. 2018. V. 3. P. 37. https://doi.org/10.1109/JMMCT.2018.2829871
  9. Zhang Y., Chen M.L.N., Jiang L.J. Analysis of electromagnetic vortex beams using modified dynamic mode decomposition in spatial angular domain // Opt. Exp. 2019. V. 27. № 20. P. 27702. https://doi.org/10.1364/OE.27.027702