DOI: 10.17586/1023-5086-2024-91-03-52-61
УДК: 544.032.65
New laser-based method for structural coloring the glasses
Full text on elibrary.ru
Publication in Journal of Optical Technology
Авилова Е.А., Домакова В.А., Рамос Веласкес А., Синев Д.А. Новый лазерный метод создания структурного цвета на стеклах // Оптический журнал. 2024. Т. 91. № 3. С. 52–61. http://doi.org/10.17586/1023-5086-2024-91-03-52-61
Avilova Е.А., Domakova V.A., Ramos Velazquez А., Sinev D.A. New laser-based method for structural coloring the glasses [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 3. P. 52–61. http://doi.org/10.17586/1023-5086-2024-91-03-52-61
Ekaterina A. Avilova, Vera A. Domakova, Alejandro Ramos Velazquez, and Dmitry A. Sinev, "New laser-based method for the structural coloring of glasses," Journal of Optical Technology. 91(3), 164-169 (2024). https://doi.org/10.1364/JOT.91.000164
Subject of study. Method for color laser marking of glasses based on combination of laser-induced backward transfer with laser-induced periodic surface structures formation. Aim of study. Development of a two-step method for creating marks such as rainbow holograms on the optically transparent material surface by the laser-induced backward transfer of metal coatings method, followed by re-irradiation of the deposited film in modes of formation of laser-induced surface periodic structures using one technological laser system. Method is based on laser-induced ablation of the donor titanium target in contact with acceptor glass, with subsequent lasing the transferred coating until laser-induced periodic surface structures creation. Recording is implemented using a single commercially-grade setup consisting of ns Yb-fiber laser source, 2D scanning system, and F-theta lens. Main results. The new laser-induced periodic surface structures method for creation of rainbow hologram-like signs was developed for marking the substrates transparent in the visible and near infrared bandwidths. The patterns formed show a consistent period of 0.73 ± 0.04 µm and exhibit diffraction grating properties, yielding with structural colors when illuminated by white light. Practical significance. The developed method can be used for security labeling the products made from glass and other transparent materials.
laser-induced periodic surface structures, laser-induced backward transfer, color laser marking, structural colors
Acknowledgements:this work was supported by the Russian Science Foundation, project № 21-79-10241. The investigation of the structure by means of EDX/SEM was carried out at the IRC for Nanotechnology of the Science Park of Saint-Petersburg State University within the framework of project № АААА-А19-119091190094
OCIS codes: 090.5640, 140.3390
References:1. Egger P., Müller E. Coating composition, preferably printing ink for security applications, method for producing a coating composition and use of glass ceramics // US Patent 6,613,137. B2 2000. Publ. Sep. 2, 2003.
2. Lin H., Schottland P., Schwartz A., et al. Security pigments and the process of making thereof // US Patent 2008/0087189 A1 2005. Publ. April 17, 2008.
3. Logunov S.L., Masters L.T., Miller W.J., et al. Anti-counterfeiting measures for glass // US Patent 10,676,240. B2 2017. Publ. Jun. 9, 2020.
4. Jayarama A., Kannarpady G.K., Kaleet S. Chemical etching of glasses in hydrofluoric acid: A brief review // Materials Today: Proc. 2022. V. 55 P. 46–51. http://doi.org/10.1016/j.matpr.2021.12.110
5. Wesang K., von Witzendorff P., Suttmann O. Local heat tempering with laser radiation for brilliant colors on glass surfaces // J. Laser Appl. 2018 V. 30. № 3. http://doi.org/ 10.2351/1.5040608
6. Staroń A., Długosz O., Szostak A. Study of the influence of etching mixture components on the frosted glass effect // J. Non-Crystalline Solids. 2021. V. 554. P. 120583. http://doi.org/ 10.1016/j.jnoncrysol.2020.120583
7. Hanada Y., Sugioka K., Midorikawa K. Nanosecond lasers micromachine glass // SPIE Newsroom. 2006. January. http://doi.org/ 10.1117/2.1200608.0334
8. Mikutis M., Kudriuset T., Slekys G., et al. High 90% efficiency Bragg gratings formed in fused silica by femtosecond Gauss–Bessel laser beams // Opt. Mater. Exp. 2013. V. 3. № 11. P. 1862. http://doi.org/ 10.1364/ome.3.001862
9. Dalaq A.S., Barthelat F. Three-dimensional laser engraving for fabrication of tough glass-based bioinspired materials // JOM. 2020 V. 72. № 4. P. 1487–1497. http://doi.org/10.1007/s11837-019-04001-w
10. Liu H., Lin W., Hong M. Hybrid laser precision engineering of transparent hard materials: Challenges, solutions and applications // Light: Sci. & Appl. 2021. V. 10. № 1. http://doi.org/ 10.1038/s41377-021-00596-5
11. Jiang W., Xie X.Z., Wei X., et al. High contrast patterning on glass substrates by 1064 nm pulsed laser irradiation // Opt. Mater. Exp. 2017. V. 7. № 5. P. 1565. http://doi.org/10.1364/ome.7.001565
12. Коваль В.В., Сергеев М.М., Заколдаев Р.А., Костюк Г.К. Изменения спектральных характеристик пластин кварцевого стекла при обработке лазерно-индуцированной микроплазмой // Оптический журнал. 2017. Т. 84. № 7. С. 22–29.
Koval’ V.V., Sergeev M.M., Zakoldaev R.A., and Kostyuk G.K. Changes in the spectral characteristics of quartz-glass plates when they are processed with laser-induced plasma // J. Opt. Technol. 2017. V. 84. № 7. P. 447–452. https://doi.org/10.1364/JOT.84.000447
13. Рымкевич В.С., Болошко А.А., Сергеев М.М. Влияние длительности импульса лазерного излучения на обработку кварцевого стекла лазерно-индуцированной микроплазмой // Оптический журнал. 2023. Т. 90. № 4. С. 68–77. http://doi.org/10.17586/1023-5086-2023-90-04-68-77
Rymkevich V.S., Boloshko A.A., Sergeev M.M. Laser pulse duration influence on the fused silica treatment by laser-induced microplasma // J. Opt. Technol. 2023. V. 90. № 4. P. 199–204. https://doi.org/10.1364/JOT.90.000199
14. Ligbado G., Horn A., Kreutz E.W., et al. Coloured marking inside glass by laser radiation // Technologies for Optical Countermeasures II; Femtosecond Phenomena II; and Passive Millimetre-Wave and Terahertz Imaging II. SPIE. 2005. V. 5989. https://doi.org/10.1117/12.631724
15. Richter L.J., Beckmann C.M., Ihlemann J. UV laser generated micro structured black surface on commercial TiO2-containing glass // Appl. Surf. Sci. 2022. V. 601. https://doi.org/10.1016/j.apsusc.2022.154231
16. Liang L., He L., Jiang Z., et al. Experimental study on the direct planar metallization on glass by the particle sputtering in laser-induced plasma-assisted ablation // J. Manufact. Proc. 2022. V. 75. P. 573–583. https://doi.org/10.1016/j.jmapro.2022.01.023
17. Urrehman Z., Yang F., Wang M., et al. Fundamentals and advances in laser-induced transfer // Opt. & Laser Technol. 2023. V. 160. P. 109065. https://doi.org/10.1016/j.optlastec.2022.109065
18. Hanada Y., Sugioka K., Miyamoto I., et al. Colour marking of transparent materials by laser-induced plasma-assisted ablation (LIPAA) // J. Phys.: Conf. Ser. 2007. V. 59. № 1. P. 687–690. https://doi.org/10.1088/1742-6596/59/1/145
19. Ramos-Velazquez A., Amiaga J.V., Pankin D., et al. Laser-induced micro-scale polychrome marking of glass materials // Mater. Lett. 2023. V. 343. № 7. P. 134372. https://doi.org/10.1016/j.matlet.2023.134372
20. Chen J., Lu X., Wen Q., et al. Review on laser-induced etching processing technology for transparent hard and brittle materials // Internat. J. Advanced Manufacturing Technol. 2021. V. 117. P. 2545–2564. https://doi.org/10.1007/s00170-021-07853-2
21. Andreeva Y.M., Luong V.C., Lutoshina D.S., et al. Laser coloration of metals in visual art and design // Opt. Mater. Exp. 2019. V. 9. № 3. P. 1310. https://doi.org/10.1364/ome.9.001310
22. Zhao Q., Yetisen A., Sabouri A., et al. Printable nanophotonic devices via holographic laser ablation // ACS nano. 2015. V. 9. № 9. P. 9062–9069. https://doi.org/10.1021/acsnano.5b03165
23. Meinertz J., Gödecke A., Richter L., et al. Fast fabrication of diffractive patterns on glass by excimer laser ablation // Opt. & Laser Technol. 2022. V. 152. https://doi.org/10.1016/j.optlastec.2022.108148
24. Soldera M., Alamri S., Sürmann P., et al. Microfabrication and surface functionalization of soda lime glass through direct laser interference patterning // Nanomaterials. 2021. V. 11. № 1. P. 129. https://doi.org/10.3390/nano11010129
25. Shakhno E.A., Nguyen Q.D., Sinev D.A., et al. Laser thermochemical high-contrast recording on thin metal films // Nanomaterials. 2021. V. 11. № 1. P. 1–16. https://doi.org/10.3390/nano11010067
26. Mezera M., Florian C., Römer G., et al. Creation of material functions by nanostructuring // Ultrafast Laser Nanostructuring: The Pursuit of Extreme Scales. 2023. V. 239. P. 827–886. https://doi.org/10.1007/978-3-031-14752-4_23
27. Москвин М.К., Щедрина Н.Н., Долгополов А.Д. и др. Лазерное формирование периодических структур как метод одноэтапного синтеза защитных голограмм // Оптический журнал. 2023. Т. 90. № 4. С. 18–34. http://doi.org/10.17586/1023-5086-2023-90-04-18-34
Moskvin M.K., Shchedrina N.N., Dolgopolov A.D., et al. Laser-based formation of periodic structures as a method for the one-stage production of security holograms // J. Opt. Technol. 2023. V. 90. № 4. P. 170–178. https://doi.org/10.1364/JOT.90.000170
28. Reinhardt H., Maier P., Kim H., et al. Nanostructured transparent conductive electrodes for applications in harsh environments fabricated via nanosecond laser‐induced periodic surface structures (LIPSS) in indium–tin oxide films on glass // Advanced Materials Interfaces. 2019. V. 6. № 16. http://doi.org/10.1002/admi.201900401
29. Andreeva Y., Suvorov A., Grigoryev E., et al. Laser fabrication of highly ordered nanocomposite subwavelength gratings // Nanomaterials. 2022. V. 12. № 16. http://doi.org/10.3390/nano12162811
30. Sinev D.A., Yuzhakova D.S., Moskvin M.K., et al. Formation of the submicron oxidative LIPSS on thin titanium films during nanosecond laser recording // Nanomaterials. 2020. V. 10. № 11. P. 1–9. http://doi.org/10.3390/nano10112161
31. Bronnikov K., Gladkikh S., Okotrub K., et al. Regulating morphology and composition of laser-induced periodic structures on titanium films with femtosecond laser wavelength and ambient environment // Nanomaterials. 2022. V. 12. № 3. P. 306. http://doi.org/10.3390/nano12030306
32. Shimotsuma Y., Kazansky P., Qiu J., et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses // Phys. Rev. Lett. 2003. V. 91. № 24. http://doi.org/10.1103/PhysRevLett.91.247405
33. Gräf S., Kunz C., Müller F. Formation and properties of laser-induced periodic surface structures on different glasses // Materials. 2017. V. 10. № 8. P. 933. http://doi.org/10.3390/ma10080933
34. Wolff M., Wonneberger R., Freiberg K., et al. Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition // Surfaces and Interfaces. 2023. V. 42. № A. P. 103305. http://doi.org/10.1016/j.surfin.2023.103305
35. Rajendran S., Keidar M., Boyd I. Ablation and plasma formation due to laser irradiance // 38th AIAA Plasmadynamics and Lasers Conf. in Conjunction with the 16th Internat. Conf. MHD Energy Conversion. Miami, USA. June 25–26, 2007. P. 4378.
36. Dhami G., Tan B., Venketakrishnan K. Laser induced reverse transfer of gold thin film using femtosecond laser // Opt. and Lasers in Eng. 2011. V. 49. № 7. P. 866–869. http://doi.org/10.1016/j.optlaseng.2011.02.019
37. Isakov V.A., Kanavin A.P., Nasibov A.S. Hydrodynamic efficiency of laser-induced transfer of matter // Quant. Electron. 2007. V. 37. № 4. P. 405–408. http://doi.org/10.1070/qe2007v037n04abeh013427
38. Veiko V.P., Shakhno E.A., Smirnov V.N., et al. Laser-induced film deposition by LIFT: Physical mechanisms and applications // Laser and Particle Beams. 2006. V. 24. № 2. P. 203–209. https://doi.org/10.1017/S0263034606060289
39. Cutroneo M., Havranek V., Flaks J., et al. Pulsed laser deposition and laser-induced backward transfer to modify polydimethylsiloxane // Coatings. 2021. V. 11. № 12. P. 1521. http://doi.org/10.3390/coatings11121521
40. Shugaev M., He M., Levy Y., et al. Handbook of laser micro- and nano-engineering. Springer, 2021. 2127 p.
41. Ehrhardt M., Han B., Frost F., et al. Generation of laser-induced periodic surface structures (LIPSS) in fused silica by single NIR nanosecond laser pulse irradiation in confinement // Appl. Surf. Sci. 2019. V. 470. P. 56–62. http://doi.org/10.1016/j.apsusc.2018.11.119
42. Bonse J., Gräf S. Ten open questions about laser-induced periodic surface structures // Nanomaterials. 2021. V. 11. № 12. http://doi.org/10.3390/nano11123326
43. Dostovalov A.V., Korolkov V.P., Okotrub K.A., et al. Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness // Opt. Exp. 2018. V. 26. № 6. P. 7712. http://doi.org/10.1364/oe.26.007712
44. Dostovalov A., Derrien T., Preucil F., et al. LIPSS on thin metallic films: New insights from multiplicity of laser-excited electromagnetic modes and efficiency of metal oxidation // Appl. Surf. Sci. 2019. V. 491 P. 650–58 http://doi.org/10.1088/1742-6596/1092/1/012025
45. Либенсон М.Н. Лазерно-индуцированные оптические и термические процессы в конденсированных средах и их взаимное влияние. СПб.: Наука, 2007. 423 c.
Libenson M.N. Laser-induced optical and thermal processes in condensed media and their mutual influence [in Russian]. St. Petersburg: ″Nauka″ Publ, 2007. 423 p.