ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-04-16-25

УДК: 535

Second-harmonic generation of a circularly polarized laser pulse ionizing atoms and molecules in the presence of a static electric field

For Russian citation (Opticheskii Zhurnal):

Силаев А.А., Романов А.А., Введенский Н.В. Генерация второй гармоники циркулярно-поляризованного лазерного импульса, ионизующего атомы и молекулы в присутствии постоянного электрического поля // Оптический журнал. 2024. Т. 91. № 4. С. 16–25. http://doi.org/10.17586/1023-5086-2024-91-04-16-25

 

Silaev A.A., Romanov A.A., Vvedenskii N.V. Second-harmonic generation of a circularly polarized laser pulse ionizing atoms and molecules in the presence of a static electric field [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 4. P. 16–25. http://doi.org/10.17586/1023-5086-2024-91-04-16-25

For citation (Journal of Optical Technology):

Alexander Silaev, Alexander Romanov, and Nikolay Vvedenskii, "Generation of the second harmonic of a circularly polarized laser pulse ionizing atoms and molecules in the presence of a static electric field," Journal of Optical Technology. 91(4), 222-227 (2024).  https://doi.org/10.1364/JOT.91.000222

Abstract:

Subject of study. We study the generation of the second harmonic of a circularly polarized laser pulse during the tunneling ionization of atoms or molecules in the presence of a static electric field. Aim of study. The aim of the study is to obtain the analytical expression for the free-electron current density at the second harmonic of the laser pulse in the presence of static electric field and to compare the efficiency of second harmonic generation for circular and linear polarizations of the laser pulse. Method. To calculate the electron current density we use the classical equation of cold plasma hydrodynamics with a variable number of particles determined by the probability of tunneling ionization under the action of the laser pulse and static field. The analytical solution is obtained using the expansion of the ionization probability in a Taylor series in small constant field. Main results. Based on the comparison with the results of numerical calculations, we demonstrate high accuracy of the obtained analytical expression. We show that the excited current density consists of the circularly polarized second harmonic with the amplitude linear in the static field, while the amplitude of the third harmonic is proportional to the square of the static field and is much less than the amplitude of the second harmonic. For a fixed final degree of gas ionization (both much smaller and of the order of unity), the second-harmonic has the same order of amplitudes for linear and circular pulse polarization. For an arbitrary ellipticity of the laser pulse the duration of the second harmonic is determined by ionization duration, which is much shorter than the duration of the laser pulse. Practical significance. The linear dependence of the amplitude of the second harmonic on the constant field opens up the possibility of measuring pulses in the terahertz and mid-infrared ranges using the sampling method with high temporal resolution.

Keywords:

second harmonic generation, laser pulse, ionization, plasma, detection of terahertz and mid-infrared radiation

Acknowledgements:

second harmonic generation, laser pulse, ionization, plasma, detection of terahertz and mid-infrared radiation.

OCIS codes: 020.0020, 190.0190

References:
  1. Karpowicz N., Dai J., Lu X., Chen Y., Yamaguchi M., Zhao H., Zhang X.-C., Zhang L., Zhang C., Price-Gallagher M., Fletcher C., Mamer O., Lesimple A., Johnson K. Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” // Applied Physics Letters. 2008. V. 92. № 1. P. 011131. https://doi.org/10.1063/1.2828709
  2. Lu X., Karpowicz N., Chen Y., Zhang X.-C. Systematic study of broadband terahertz gas sensor // Applied Physics Letters. 2008. V. 93. № 26. P. 261106. https://doi.org/10.1063/1.3056119
  3. Lü Z., Zhang D., Meng C., Sun L., Zhou Z., Zhao Z., Yuan J. Polarization-sensitive air-biased-coherent detection for terahertz wave // Applied Physics Letters. 2012. V. 101. № 8. P. 081119. https://doi.org/10.1063/1.4748171
  4. Matsubara E., Nagai M., Ashida M. Coherent infrared spectroscopy system from terahertz to near infrared using air plasma produced by 10-fs pulses // Journal of the Optical Society of America B: Optical Physics. 2013. V. 30 № 6. P. 1627–1630. https://doi.org/10.1364/JOSAB.30.001627
  5. Buccheri F., Huang P., Zhang X.-C. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas // Frontiers of Optoelectronics. 2018. V. 11. P. 209–244. https://doi.org/10.1007/s12200-018-0819-8
  6. Tan Y., Zhao H., Wang W.-M., Zhang R., Zhao Y.-J., Zhang C.-L., Zhang X.-C., Zhang L.-L. Water-based coherent detection of broadband terahertz pulses // Physical Review Letters. 2022. V. 128. № 9. P. 093902. https://doi.org/10.1103/PhysRevLett.128.093902
  7. Xiao W., Zhang M., Zhang R., Zhang C., Zhang L. Highly efficient coherent detection of terahertz pulses based on ethanol // Applied Physics Letters. 2023. V. 122. № 6. P. 061105. https://doi.org/10.1063/5.0137707
  8. Silaev A.A., Romanov A.A., Vvedenskii N.V. Using the generation of Brunel harmonics by elliptically polarized laser pulses for high-resolution detecting lower-frequency radiation // Optics Letters. 2022. V. 47. № 18. P. 4664–4667. https://doi.org/10.1364/OL.462916
  9. Silaev A.A., Romanov A.A., Vvedenskii N.V. Analytical calculation of free-electron current density at low-order harmonics of ionizing elliptically polarized laser pulse in the presence of a static electric field // Optics and Spectroscopy. 2023. V. 2. P. 169–172. http://doi.org/10.61011/EOS.2023.02.55779.13-23
  10. Raizer Yu.P. Gas discharge physics. Berlin: Springer-Verlag, 1991. 460 p.
  11. Brunel F. Harmonic generation due to plasma effects in a gas undergoing multiphoton ionization in the highintensity limit // Journal of the Optical Society of America B: Optical Physics. 1990. V. 7. № 4. P. 521–526. https://doi.org/10.1364/JOSAB.7.000521
  12. Tong X.M., Lin C.D. Empirical formula for static field ionization rates of atoms and molecules by lasers in the barrier-suppression regime // Journal of Physics B: Atomic, Molecular and Optical Physics. 2005. V. 38. № 15. P. 2593. https://doi.org/10.1088/0953-4075/38/15/001
  13. Kostin V.A., Vvedenskii N.V. Generation of few- and subcycle radiation in midinfrared-to-deep ultraviolet range during plasma production by multicolor femtosecond pulses // Physical Review Letters. 2018. V. 120. № 6. P. 065002. https://doi.org/10.1103/PhysRevLett.120.065002
  14. Silaev A.A., Vvedenskii N.V. Analytical description of generation of the residual current density in the plasma produced by a few-cycle laser pulse // Physics of Plasmas. 2015. V. 22. № 5. P. 053103. https://doi.org/10.1063/1.4918333