ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-04-3-15

УДК: 535.015, 535.421

Identification of Hermite–Gaussian and Bessel modes of terahertz beam with diffractive optical elements

For Russian citation (Opticheskii Zhurnal):

Осинцева Н.Д., Герасимов В.В., Чопорова Ю.Ю., Кукотенко В.Д., Павельев В.С., Князев Б.А. Идентификация эрмит-гауссовых и бесселевых мод терагерцового пучка с помощью дифракционных оптических элементов // Оптический журнал. 2024. Т. 91. № 4. С. 3–15. https://orcid.org/10.17586/1023-5086-2024-91-04-3-15

 

Osintseva N.D., Gerasimov V.V., Choporova Yu.Yu., Kukotenko V.D., Pavelyev V.S., Knyazev B.A. Identification of Hermite–Gaussian and Bessel modes of terahertz beam with diffractive optical elements [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 4. P. 3–15. http://doi.org/10.17586/1023-5086-2024-91-04-3-15

For citation (Journal of Optical Technology):

Natalya D. Osintseva, Vasily V. Gerasimov, Yulia Yu. Choporova, Valeriia D. Kukotenko, Vladimir S. Pavelyev, and Boris A. Knyazev, "Identification of the Hermite-Gaussian and Bessel modes of a terahertz beam with diffractive optical elements," Journal of Optical Technology. 91(4), 215-221 (2024). https://doi.org/10.1364/JOT.91.000215

Abstract:

Subject of study. A technique for identifying Hermite–Gaussian and Bessel modes using diffractive optical elements has been investigated in a terahertz range. The aim of study is the development and testing of a method for identifying the mode composition of the terahertz radiation beam using binary phase diffraction optical elements for single-mode and multimode cases. Method. The proposed approach is based on the correlation filtering method. A beam with a high content of the mode under study was formed using the binary phase diffractive element, and then it illuminated the filter system consisting of the similar element and lens. If the modes, with which the forming and filtering elements were matched, a bright spot in the center, the so-called positive response, was observed. Otherwise, radially symmetrically located petals with a dark spot in the center were observed in the center, which corresponds to a negative response. Main results. The experimental results on identification of Hermite-Gaussian modes (with numbers (1, 0) and (0, 1)) and Bessel modes (with topological charge modulus
|l| = 1, 2, 3, 4) in the case of the single-mode beam are presented. For the case of the multimode beam, a combination of Bessel beams with topological charges –1 and –2 was formed. Practical significance. The wireless data transmission at terahertz frequencies (the target frequency range of the next generation of 6G communications) using multimode Bessel beams will allow to significantly increase the information density of transmitted data and to achieve speeds of the order of Tbit/s. The method described in the work can be used for decoding the signals transmitted in a multimode beam.

Keywords:

terahertz range, diffraction optics, phase axicon, beams Bessel, Hermite-Gauss beams, optical vortices

Acknowledgements:

the authors express their gratitude to G.N. Kulipanov and N.A. Vinokurov for supporting the work, the free electron laser team for ensuring stable operation of the installation and N.A. Nikolaev for useful recommendations and  assistance in reviewing the manuscript. The work was carried out at the shared research center “Siberian Synchrotron and Terahertz Radiation Center” on the basis of the unique scientific installation “Novosibirsk FEL” at the BINP SB RAS.

OCIS codes: 050.1380, 070.6110, 140.2600

References:
  1. Allen L., Beijersbergen M.W., Spreeuw R.J.C. et al. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes // Phys. Rev. A. 1992. V. 45. № 11. P. 8185–8189. https://doi.org/10.1103/PhysRevA.45.8185
  2. Knyazev B.A., Serbo V.G. Beams of photons with nonzero projections of orbital angular momenta: new results [in Russian] // Physics Uspekhi. 2018. V. 61. № 5. P. 449. https://doi.org/10.3367/UFNr.2018.02.038306
  3. Shen Y., Wang X., Xie Z. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities // Light Sci Appl. 2019. V. 8. № 1. P. 90. https://doi.org/10.1038/s41377-019-0194-2
  4. Yang H., Zheng S., He W. et al. Terahertz orbital angular momentum: Generation, detection and communication // China Commun. 2021. V. 18. № 5. P. 131–152. https://doi.org/10.23919/JCC.2021.05.009
  5. Khonina S.N., Kazanskiy N.L., Karpeev S.V. et al. Bessel beam: Significance and applications – A progressive review // Micromachines. 2020. V. 11. № 11. P. 997. https://doi.org/ 10.3390/mi11110997
  6. Shkuratova V.A., Kostyuk G.K., Petrov A.A. et al. Multiplication of a Gaussian beam by a multisector binary phase plate into scalar vortex beams for laser microprocessing // J. Opt. Technol. 2023. V. 90. № 5. P. 282–288. https://doi.org/10.1364/JOT.90.000282
  7. Wang J., Yang J.Y., Fazal I.M. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing // Nature Photon. 2012. V. 6. № 7. P. 488–496. https://doi.org/10.1038/nphoton.2012.138
  8. Tamburini F., Mari E., Sponselli A. et al. Encoding many channels on the same frequency through radio vorticity: first experimental test // New J. Phys. 2012. V. 14. № 3. P. 033001. https://doi.org/10.1088/1367-2630/14/3/033001
  9. Kabir Md.A., Ahmed K., Hassan M.M. et al. Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication // Optics Communications. 2020. V. 475. P. 126192. https://doi.org/10.1016/j.optcom.2020.126192
  10. Kulya M.S., Sokolenko B., Gorodetsky A. et al. Propagation dynamics of ultrabroadband terahertz beams with orbital angular momentum for wireless data transfer // Broadband Access Communication Technologies XIV. SPIE. 2020. V. 11307. P. 112–119. https://doi.org/10.1117/12.2547695
  11. Fickler R., Campbell G., Buchler B. et al. Quantum entanglement of angular momentum states with quantum numbers up to 10,010 // Proc. Natl. Acad. Sci. U.S.A. 2016. V. 113. № 48. P. 13642–13647. https://doi.org/10.1073/pnas.1616889113
  12. Zhu L., Wang J. A review of multiple optical vortices generation: methods and applications // Front. Optoelectron. 2019. V. 12. № 1. P. 52–68. https://doi.org/10.1007/s12200-019-0910-9
  13. Liu X., Huang S., Xie W., et al. Topological charge parallel measurement method for optical vortices based on computer-generated holography // J. Opt. Technol. 2022. V. 89. № 2. P. 94–100. https://doi.org/10.1364/JOT.89.000094
  14. Shen Z., Hu Z.J., Yuan G.H. et al. Visualizing orbital angular momentum of plasmonic vortices // Opt. Lett. 2012. V. 37. № 22. P. 4627. https://doi.org/10.1364/OL.37.004627
  15. Stellinga D., Pietrzyk M.E., Glackin, J.M. et al. An organic vortex laser // ACS Nano. 2018. V. 12. № 3. P. 2389–2394. https://doi.org/10.1021/acsnano.7b07703
  16. Tudor R., Bulzan G.A., Kusko M. et al. Multilevel spiral axicon for high-order Bessel–Gauss beams generation // Nanomaterials. 2023. V. 13. № 3. P. 579. https://doi.org/10.3390/nano13030579
  17. Zhao L., Jiang X., Wang Z. et al. Broadband achromatic metalens for tunable focused vortex beam generation in the near-infrared range // Nanomaterials. 2023. V. 13. № 20. P. 2765. https://doi.org/10.3390/nano13202765
  18. Liu J., Gu J., Huang L. et al. Mid-infrared vortex array generation with a tunable singularity in an Er: YAP laser // Applied Physics Letters. AIP Publishing, 2023. V. 123. № 2. https://doi.org/10.1063/5.0158153
  19. Tollkühn M., Ritter P.J., Hanisch D. et al. THz microscopy with Josephson cantilevers for characterization of additive manufactured spiral phase plates // IEEE Trans. Appl. Supercond. 2023. V. 33. № 5. P. 1–5. https://doi.org/10.1109/TASC.2023.3261260
  20. Vogliardi A., Ruffato G., Bonaldo D. et al. Silicon metaoptics for the compact generation of perfect vector beams in the telecom infrared // Optics Letters. 2023. V. 48. № 18. P. 4925–4928. https://doi.org/10.1364/OL.501239
  21. Krenn M., Fickler R., Fink M. et al. Communication with spatially modulated light through turbulent air across Vienna // New J. Phys. 2014. V. 16. № 11. P. 113028. https://doi.org/10.1088/1367-2630/16/11/113028
  22. Terzi M.E., Tsysar S.A., Yuldashev P.V. et al. Generation of a vortex ultrasonic beam with a phase plate with an angular dependence of the thickness // Moscow Univ. Phys. 2017. V. 72. № 1. P. 61–67. https://doi.org/10.3103/S0027134916050180
  23. He J., Wang X., Hu D. et al. Generation and evolution of the terahertz vortex beam // Opt. Express. 2013. V. 21. № 17. P. 20230. https://doi.org/10.1364/OE.21.020230
  24. Miyamoto K., Suizu K., Akiba T. et al. Direct observation of the topological charge of a terahertz vortex beam generated by a Tsurupica spiral phase plate // Appl. Phys. Lett. 2014. V. 104. № 26. P. 261104. https://doi.org/10.1088/1367-2630/16/11/113028
  25. Zhu L., Wei X., Wang J. et al. Experimental demonstration of basic functionalities for 0.1-THz Orbital Angular Momentum (OAM) communications // OFC 2014. San Francisco, California United States. March 9–13, 2014. P. 1–3. https://doi.org/10.1364/OFC.2014.M3K.7
  26. Chen Z., Ma X., Zhang B. et al. A survey on terahertz communications // China Communications. 2019. V. 16. № 2. P. 1–35. https://doi.org/10.12676/j.cc.2019.02.001
  27. Jia S., Zhang L., Wang S. et al. 2ґ300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission // J. Lightwave Technol. 2020. V. 38. № 17. P. 4715–4721. https://doi.org/10.1109/JLT.2020.2995702
  28. Guan S., Cheng J., Chang S. Recent progress of terahertz spatial light modulators: Materials, principles and applications // Micromachines. 2022. V. 13. № 10. P. 1637. https://doi.org/10.3390/mi13101637
  29. Glyavin M.Yu. Development and applications of THz gyrotrons // EPJ Web Conf. 2017. V. 149. P. 01008. https://doi.org/10.1051/epjconf/201714901008
  30. Glyavin M.Yu., Luchinin A.G., Golubiatnikov G.Yu. Generation of 1.5-kW, 1-THz coherent radiation from a gyrotron with a pulsed magnetic field // Phys. Rev. Lett. 2008. V. 100. № 1. P. 015101. https://doi.org/10.1103/PhysRevLett.100.015101
  31. Shevchenko O.A., Vinokurov N.A., Arbuzov V.S. et al. The Novosibirsk free electron laser facility // AIP Conf. Proc. 2020. V. 2299. № 1. P. 020001. https://doi.org/10.1063/5.0031513
  32. Tan P., Huang J., Liu K. et al. Terahertz radiation sources based on free electron lasers and their applications // Sci. China Inf. Sci. 2012. V. 55. № 1. P. 1–15. https://doi.org/10.1007/s11432-011-4515-1
  33. Agafonov A.N., Volodkin B. O., Kaveev A. K. et al. Silicon diffractive optical elements for high-power monochromatic terahertz radiation // Optoelectron. Instrument. Proc. 2013. V. 49. № 2. P. 189–195. https://doi.org/10.3103/S875669901302012X
  34. Pavelyev V., Khonina S., Degtyarev S. et al. Subwavelength diffractive optical elements for generation of terahertz coherent beams with pre-given polarization state // Sensors. 2023. V. 23. № 3. P. 1579. https://doi.org/10.3390/s23031579
  35. Choporova Yu.Yu., Knyazev B.A., Kulipanov G.N. et al. High-power Bessel beams with orbital angular momentum in the terahertz range // Phys. Rev. A. 2017. V. 96. № 2. P. 023846. https://doi.org/10.1103/PhysRevA.96.023846
  36. Choporova Y., Knyazev B., Pavelyev V. Holography with high-power CW coherent terahertz source: optical components, imaging, and applications // Light: Advanced Manufacturing. 2022. V. 3. № 3. P. 525–541. https://doi.org/10.37188/lam.2022.031
  37. Wei X., Liu C., Zhang Z. et al. Orbit angular momentum encoding at 0.3 THz via 3D printed spiral phase plates // Infrared, Millimeter-Wave, and Terahertz Technologies III. SPIE. 2014. V. 9275. P. 260–265. https://doi.org/10.1117/12.2085083
  38. Volyar A., Bretsko M., Akimova Y. et al. Measurement of the vortex spectrum in a vortex-beam array without cuts and gluing of the wavefront // Optics Letters. Optica Publishing Group. 2018. V. 43. № 22. P. 5635–5638. https://doi.org/10.1364/OL.43.005635
  39. Volyar A., Bretsko M., Akimova Y. et al. Measurement of the vortex and orbital angular momentum spectra with a single cylindrical lens // Applied optics. Optica Publishing Group. 2019. V. 58. № 21. P. 5748–5755. https://doi.org/10.1364/AO.58.005748
  40. Volyar A.V., Abramochkin E.G., Egorov Yu.A. et al. Digital sorting of Hermite–Gauss beams: mode spectra and topological charge of a perturbed Laguerre–Gauss beam // Computer Optics. 2020. V. 44. № 4. P. 501–509. https://doi.org/10.18287/2412-6179-C0-747
  41. Soifer V.A., Golub M.A. Laser beam mode selection by computer generated holograms. Boca Raton: CRC Press, 1994. 78–85 p.
  42. Sisakyan I.N., Golub M.A., Soifer V.A. Modans are new elements of computer optics [in Russian] // Computer Optics. 1990. № 08. P. 3–64.
  43. Volodkin B., Choporova Y., Knyazev B. et al. Fabrication and characterization of diffractive phase plates for forming high-power terahertz vortex beams using free electron laser radiation // Opt Quant Electron. 2016. V. 48. № 4. P. 223. https://doi.org/10.1007/s11082-016-0496-z
  44. Osintseva N.D., Gerasimov V.V., Knyazev B.A. et al. Terahertz Bessel and "perfect" vortex beams generated with a binary axicon and axicon with continuous relief // Computer Optics. 2022. V. 46. № 3. P. 375–380. https://doi.org/10.18287/2412-6179-CO-1066
  45. Trichili A., Mhlanga T., Ismail Y. et al. Detection of Bessel beams with digital axicons // Opt. Express. 2014. V. 22. № 14. P. 17553. https://doi.org/10.1364/OE.22.017553
  46. Abadi M.M., Cox M.A., Alsaigh R.E. et al. A space division multiplexed free-space-optical communication system that can auto-locate and fully self-align with a remote transceiver // Sci Rep. 2019. V. 9. № 1. P. 19687. https://doi.org/10.1038/s41598-019-55670-1