ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-04-60-72

УДК: 520.2.01/.07; 535.313.1; 535.313.2

Optical system of aplanatic telescope with spherical primary mirror

For Russian citation (Opticheskii Zhurnal):

Дружин В.В., Пуряев Д.Т. Оптическая система апланатического телескопа с главным сферическим зеркалом // Оптический журнал. 2024. Т. 91. № 4. С. 60–72. http://doi.org/10.17586/1023-5086-2024-91-04-60-72

 

Druzhin V.V., Puryaev D.T. Optical system of aplanatic telescope with spherical primary mirror [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 4. P. 60–72. http://doi.org/10.17586/1023-5086-2024-91-04-60-72

For citation (Journal of Optical Technology):

Vladislav V. Druzhin and Daniil T. Puryaev, "Optical system of an aplanatic telescope with a spherical primary mirror," Journal of Optical Technology. 91(4), 247-254 (2024).  https://doi.org/10.1364/JOT.91.000247

Abstract:

The subject of study is the optical system of the telescope with a main spherical mirror and a mirror corrector of field aberrations. The aim of study is the description of the method of analytical calculation of the telescope system with main spherical mirror and two-mirror aplanatic corrector of spherical mirror aberrations. The method of carrying out the work is based on the analysis of realization of Fermat principle and the Abbe sine condition in the system consisting of a combination of a spherical surface and nonspherical surface of second order. The main results are the proposed mathematical equations for the mirror surface of the aplanatic system with the spherical primary mirror and two element corrector of field aberrations. The corrector contains two concave hyperbolic mirrors placed near the paraxial focus of the spherical mirror. The focal length of the telescope is equal to the paraxial focal length of the primary mirror. The results of the calculation of two variants of optical schemes of the telescope with the following values of the diameter of the entrance pupil, aperture f-number and angular field: 1) D = 6000 mm, F-no = 4, 2w = 0,12°; 2) D = 500 мм, F-no = 2 and 2w = 0,57° are demonstrated. Practical significance. Application of the spherical mirror in telescopes makes it possible to increase the accuracy of control of the shape of the surface of telescope segments during the manufacture and operation. The compact all-mirror corrector provides the operation in a wide spectral range and corrects the spherical aberration and coma, and thus allows to increase the relative aperture of the system, angular field and image quality.

Keywords:

ground-based telescopes, space telescopes, mirror system design, large observatories, aspherics, mirrors

OCIS codes: 110.6770, 080.4035, 220.1000, 220.2740

References:
  1. Schroeder D.J. Astronomical optics, 2nd edition. San Diego: Academic Press, 1999. 478 p.
  2. Mikhelson N.N. Optics of astronomical telescopes and its calculation methods. M.: Fizmatlit, 1995. 333 p.
  3. Zverev V.A. Large azimuthal telescope // News of higher educational institutions. Instrumentation. 2010. T. 53. № 3. P. 39–50.
  4. Terebizh V. Modern optical telescopes: Textbook. Manual for university students. M.: Fizmatlit, 2005. 375 p.
  5. Chisholm E.M., Larkin J.E., Wright S.A. et al. Thirty Meter Telescope: a status update on the first light instruments and the path beyond into early light instruments // Proc. SPIE. 2020. P. 114471V. https://doi.org/10.1117/12.2559576 PSISDG 0277-786X
  6. Skidmore W., Bernstein R., Dumas C., Goodrich R., Millan-Gabet R., Ramsay S., Travouillon T., Vernet J. Instrument programs of the Extremely Large Class Telescopes // Journal of Astronomical Telescopes, Instruments, and Systems. 2022. V. 8. Iss. 2. https://doi.org/10.1117/1.JATIS.8.2.021510
  7. Fengchuan Liu, Gary Sanders. Thirty Meter telescope project status (Conference Presentation) // Proc. SPIE 10700. Ground-based and Airborne Telescopes VII. 2018. № 7. P. 1070013. https://doi.org/10.1117/12.2312178
  8. Tamai R., Koehler B., Cirasuolo M., Biancat-Marchet F., Tuti M., González-Herrera J.-C. The ESO's ELT construction progress // Proc. SPIE. 2020. 13 December. 11445. Ground-based and Airborne Telescopes VIII. 114451E. https://doi.org/10.1117/12.2562828
  9. Sychev V.V., Kasperskii V.B., Mashinina M.L. Optical system of an adaptive 25-meter telescope with a composite main mirror of spherical segments // Journal of Optical Technology. 2007. V. 74. № 2. P. 90–93. https://doi.org/10.1364/JOT.74.000090
  10. Brunetto E.T., Dierickx P., Gilmozzi R., Le Louarn M., Koch F., Noethe L., Verinaud C., Yaitskova N. Progress of ESO's 100-m OWL optical telescope design // Proc. SPIE. 7 July 2004. 5382. Second Backaskog Workshop on Extremely Large Telescopes. https://doi.org/10.1117/12.566200
  11. Monreal B., Rodriguez C., Carney A., Halliday R., Wang M. Wide Aperture Exoplanet Telescope: a low-cost flat configuration for a 100+ meter ground based telescope // J. Astron. Telesc. Instrum. Syst. 26 May 2018. V. 4(2). P. 024001. https://doi.org/10.1117/1.JATIS.4.2.024001
  12. Druzhin V.V., Puryaev D.T., Goncharov A.V. Optical system of aplanatic telescope with a 100 m spherical primary mirror // J. Astron. Telesc. Instrum. Syst. 30 June 2022. V. 8(2). P. 024005. https://doi.org/10.1117/1.JATIS.8.2.024005.
  13. Martin S.R., Lawrence C.R., Redding D.C., Mennesson B., Rodgers J.M., Hurd K., Morgan R.M., Hu R., Steeves J.B., Jewell J.B., Phillips C., Pineda C., Ferraro N., Thibault L., Flinois B. Next-generation active telescope for space astronomy // J. Astron. Telesc. Instrum. Syst. 8 December 2022. V. 8(4). P. 044005. https://doi.org/10.1117/1.JATIS.8.4.044005
  14. Leisawitz D., Amatucci E., Allen L. et al. Origins Space Telescope: trades and decisions leading to the baseline mission concept // J. Astron. Telesc. Instrum. Syst. 13 March 2021. V. 7(1). P. 011014. https://doi.org/10.1117/1.JATIS.7.1.011014
  15. Druzhin V.V., Puryaev D.T. Extremely fast aplanatic space telescope system with a 10-m-diameter spherical primary mirror // J. Astron. Telesc. Instrum. Syst. 10 March 2021. V. 7(1). P. 014005. https://doi.org/10.1117/1.JATIS.7.1.014005
  16. Jungquist R.K. Optical design of the Hobby-Eberly Telescope four-mirror spherical aberration corrector // Proc. SPIE. 5 October 1999. 3779 / Current Developments in Optical Design and Optical Engineering VIII. https://doi.org/10.1117/12.368191
  17. Darragh O'Donoghue, Arek Swat. Spherical aberration corrector of the Southern African Large Telescope (SALT) // Proc. SPIE. 5 February 2002. 4411. Large Lenses and Prisms. https://doi.org/10.1117/12.454897
  18. Damien J.J., William E.J. Prime focus correctors for the spherical mirror // Appl. Opt. 1992. V. 31. P. 4384–4388.
  19. Puryayev D.T., Goncharov A.V. Compact two-mirror schemes for telescopes with a fast spherical primary // Opt. Eng. 1 June 2000. V. 39(6). P. 1692–1696. https://doi.org/10.1117/1.602546
  20. Puryayev D.T. Concept for a telescope optical system with a 10-m-diam spherical primary mirror // Opt. Eng. 1 July 1996. V. 35(7). https://doi.org/10.1117/1.600779
  21. Puryayev D.T., Goncharov A.V. Aplanatic four-mirror system for optical telescopes with a spherical primary mirror // Opt. Eng. 1 August 1998. V. 37(8). P. 2334–2342. https://doi.org/10.1117/1.602031
  22. Zverev V.A., Romanova G.E. Optical design of a telescope with a main mirror diameter of 10 m // News of higher educational institutions. Instrumentation. 2008. T. 51. № 5. P. 49–51.
  23. Moretto G, Sebring T.A., Ray F.B., Ramsey L.W. Aplanatic corrector designs for the extremely large telescope // Appl. Opt. 2000. V. 39. P. 2805–2812. https://doi.org/10.1364/AO.39.002805
  24. Ackermann M.R., McGraw J.T., Zimmer P.C. Improved spherical aberration corrector for fast spherical primary mirrors // Proc. SPIE 7061. Novel Optical Systems Design and Optimization XI. 11 September 2008. V. 70610I. https://doi.org/10.1117/12.791666
  25. Wenbo Yang, Yan Zhao, Ming Liu, Delong Liu. Method of space object detection by wide field of view telescope based on its following error // Opt. Express. 2021. V. 29. P. 35348–35365. https://doi.org/10.1364/OE.440842
  26. Radhika Dharmadhikari, Annu Jacob, Padmakar Parihar. Optical design of FOSC and wide field aberration corrector for the prototype segmented mirror telescope // Proc. SPIE 12638. Women in Optics and Photonics in India 2022. 11 May 2023. V. 1263807. P. 20–24. https://doi.org/10.1117/12.2669796
  27. Dharmadhikari R., Parihar P., Jacob A. Building a large affordable optical-NIR telescope (I): an alternate way to handle segmented primary mirror // Exp Astron. 2023. V. 56. P. 569–604. https://doi.org/10.1007/s10686-023-09900-0