DOI: 10.17586/1023-5086-2024-91-05-5-15
УДК: 535.323
Time-varying media for analog optical computing
Full text on elibrary.ru
Publication in Journal of Optical Technology
Levkovskaya V.M., Kharitonov A.V., Kharintsev S.S. Time-varying media for analog optical computing [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 5–15. http://doi.org/ 10.17586/1023-5086-2024-91-05-5-15
Subject of study. A new class of artificial electromagnetic media — time-varying materials, the distinctive feature of which is the rapid modulation of optical parameters of the medium at ultrashort times, comparable to or shorter than the wave period. Aim of study. This work is aimed at developing a new platform for the implementation of analog optical computers. For this purpose, the dependences of the amplitudes and frequencies of waves formed upon interaction with a time-varying medium on the permittivity switching time and the magnitude of spectral dispersion are investigated. Method. The amplitudes of reflected and refracted electromagnetic waves are calculated using the time-domain finite element method. To describe the time-varying medium with spectral dispersion, a Lorentz model with time-dependent plasma frequency is used. The optical response from the medium exhibiting non-instantaneous switching is studied by considering the sigmoidal switching profile. Main results. It is shown that using the dispersive time-varying medium it is possible to obtain several spectral components that are shifted from the frequency of the incident light. Controlling the speed and depth of the permittivity switching allows one to adjust the amplitudes and frequencies of the time reflected/refracted waves respectively. To observe the reflected wave, the duration of switching should be comparable or less than the period of the incident wave. Practical significance. The results of this work are useful for the development of next-generation optical devices. The ability to flexibly control the amplitude and frequency of light waves by temporal modulation of homogeneous media opens up new possibilities for the realization of analog optical computers.
time-varying media, dispersion, analog computing, metamaterials
Acknowledgements:OCIS codes: 190.7110, 230.4320, 260.7120
References:1. Silva A., Monticone F., Castaldi G., et al. Performing mathematical operations with metamaterials // Science. 2014. V. 343. № 6167. P. 160–163. http://doi.org/10.1126/science.1242818
2. Zangeneh-Nejad F., Sounas D.L., Alù A., et al. Analogue computing with metamaterials // Nature Rev. Mater. 2021. V. 6. № 3. P. 207–225. http://doi.org/10.1038/s41578-020-00243-2
3. Mohammadi Estakhri N., Edwards B., Engheta N. Inverse-designed metastructures that solve equations // Science. 2019. V. 363. № 6433. P. 1333–1338. http:// doi.org/10.1126/science.aaw2498
4. Li C., Li J., Fang T., et al. The challenges of modern computing and new opportunities for optics // PhotoniX. 2021. V. 2. № 1. P. 1–31. http://doi.org/10.1186/s43074-021-00042-0
5. Pakhomov A., Arkhipov R., Arkhipov M.,et al. Temporal differentiation and integration of few-cycle pulses by ultrathin metallic films // Opt. Lett. 2021. V. 46. № 12. P. 2868–2871. http://doi.org/10.1364/OL.428238
6. Pakhomov A.V. Time integration and differentiation of unipolar pulses of unusual shape // Quantum Electronics. 2021. V. 51. № 11. P. 1000. http://doi.org/10.1070/QEL17642
7. Galiffi E., Tirole R., Yin S., et al. Photonics of timevarying media // Advanced Photonics. 2022. V. 4. № 1. P. 014002–014002. http://doi.org/10.1117/1.AP.4.1.014002
8. Шварцбург А.Б. Оптика нестационарных сред // УФН. 2005. Т. 175. № 8. С. 833–861. https://doi.org/10.3367/UFNr.0175.200508c.0833 Shvartsburg A.B. Optics of nonstationary media // Physics-Uspekhi. 2005. V. 48. № 8. P. 797. https://doi.
org/10.1070/PU2005v048n08ABEH002119
9. Caloz C., Deck-Leger Z.L. Spacetime metamaterials — part II: Theory and applications // IEEE Trans. Antennas and Propagation. 2019. V. 68. № 3. P. 1583–1598. http://doi: 10.1109/TAP.2019.2944216
10. Sounas D.L., Alù A. Non-reciprocal photonics based on time modulation // Nature Photonics. 2017. V. 11. № 12. P. 774–783. http://doi.org/10.1038/s41566-017-0051-x
11. Martínez-Romero J.S., Halevi P. Parametric resonances in a temporal photonic crystal slab // Phys. Rev. A. 2018. V. 98. № 5. P. 053852. http://doi.org/10.1103/ PhysRevA.98.053852
12. Болотовский Б.М., Давыдов В.А., Рок В.Е. Излучение электромагнитных волн в случае плавного изменения параметров излучающей системы // УФН. 1982. Т. 136. № 3. С. 501–517. https://doi.org/10.3367/ UFNr.0136.198203e.0501
Bolotovskiĭ B.M., Davydov V.A., Rok V.E. The emission of electromagnetic waves in the case of a smooth variation of parameters of a radiating system // Soviet Physics Uspekhi. 1982. V. 25. № 3. P. 167. https://doi. org/10.1070/PU1982v025n03ABEH004521
13. Silveirinha M.G. Optical instabilities and spontaneous light emission by polarizable moving matter // Phys. Rev. X. 2014. V. 4. № 3. P. 031013. http://doi.org/10.1103/PhysRevX.4.031013
14. Mencagli M.J., Sounas D.L., Fink M., et al. Static-todynamic field conversion with time-varying media // Phys. Rev. B. 2022. V. 105. № 14. P. 144301. http://doi.org/10.1103/PhysRevB.105.144301
15. Lustig E., Segal O., Saha S., et al. Time-refraction optics with single cycle modulation // Nanophotonics. 2023. V. 12. № 12. P. 2221–2230. http://doi.org/10.1515/ nanoph-2023-0126
16. Liu C., Alam M.Z., Pang K., et al. Tunable Doppler shift using a time-varying epsilon-near-zero thin film near 1550 nm // Opt. Lett. 2021. V. 46. № 14. P. 3444–3447. http://doi.org/10.1364/OL.430106
17. Pang K., Alam M.Z., Zhou Y., et al. Adiabatic frequency conversion using a time-varying epsilon-near-zero metasurface // Nano Lett. 2021. V. 21. № 14. P. 5907–5913. http://doi.org/10.1021/acs.nanolett.1c00550
18. Jaffray W., Saha S., Shalaev, et al. Transparent conducting oxides: From all-dielectric plasmonics to a new paradigm in integrated photonics // Advances in Optics and Photonics. 2022. V. 14. № 2. P. 148–208. http://doi.org/10.1364/AOP.448391
19. Alam M.Z., De Leon I., Boyd R.W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region // Science. 2016. V. 352. № 6287. P. 795–797. http://doi.org/10.1126/science.aae0330
20. Arkhipov R.M., Arkhipov M.V., Babushkin I., et al. Ultrafast creation and control of population density gratings via ultraslow polarization waves // Opt. Lett. 2016. V. 41. № 21. P. 4983–4986. http://doi.org/10.1364/OL.41.004983
21. Arkhipov R.M., Pakhomov A.V., Arkhipov M.V., et al. Population density gratings induced by few-cycle optical pulses in a resonant medium // Sci. Rep. 2017. V. 7. № 1. P. 12467. http://doi.org/10.1038/s41598-017-12267-w
22. Zhang S., Li S., Bai Y., et al. Analysis of laser-induced transient population gratings by different types of exciting pulse // J. Nanophotonics. 2023. V. 17. № 1. P. 016013. http://doi.org/10.1117/1.JNP.17.01601
23. Shaltout A.M., Shalaev V.M., Brongersma M.L. Spatiotemporal light control with active metasurfaces // Science. 2019. V. 364. № 6441. P. eaat3100. http://doi.org/10.1126/science.aat3100
24. Mendonça J.T., Shukla P.K. Time refraction and time reflection: Two basic concepts // Physica Scripta. 2002. V. 65. № 2. P. 160. http://doi.org/10.1238/Physica.Regular.065a00160
25. Pacheco-Peña V., Engheta N. Antireflection temporal coatings // Optica. 2020. V. 7. № 4. P. 323–331. http://doi.org/10.1364/OPTICA.381175
26. Mendonça J.T., Martins A.M., Guerreiro A. Temporal beam splitter and temporal interference // Phys. Rev. A. 2003. V. 68. № 4. P. 043801. http://doi.org/10.1103/PhysRevA.68.043801
27. Cirone M., Rzaz-Dotewski K., Mostowski J. Photon generation by time-dependent dielectric: A soluble model // Phys. Rev. A. 1997. V. 55. № 1. P. 62. http:// doi.org/10.1103/PhysRevA.55.62
28. Harfoush F., Taflove A. Scattering of electromagnetic waves by a material half-space with a timevarying conductivity // IEEE Trans. Antennas and Propagation. 1991. V. 39. № 7. P. 898–906. http://doi:10.1109/8.86907
29. Zurita-Sánchez J.R., Abundis-Patiño J.H., Halevi P. Pulse propagation through a slab with time-periodic dielectric function ε(t) // Opt. Exp. 2012. V. 20. № 5. P. 5586–5600. http://doi.org/10.1364/OE.20.005586
30. Morgenthaler F.R. Velocity modulation of electromagnetic waves // IRE Trans. Microwave Theory and Techniques. 1958. V. 6. № 2. P. 167–172. http://doi: 10.1109/TMTT.1958.1124533
31. Felsen L., Whitman G. Wave propagation in timevarying media // IEEE Trans. Antennas and Propagation. 1970. V. 18. № 2. P. 242–253. http://doi: 10.1109/TAP.1970.1139657
32. Klopfenstein R.W. A transmission line taper of improved design // Proc. IRE. 1956. V. 44. № 1. P. 31–35. http://doi: 10.1109/JRPROC.1956.274847
33. Hayran Z., Khurgin J.B., Monticone F. ħω versus ħk: Dispersion and energy constraints on time-varying photonic materials and time crystals // Opt. Mater. Exp. 2022. V. 12. № 10. P. 3904–3917. http://doi.org/10.1364/OME.471672
34. Переломов А.М., Попов В.С., Терентьев М.В. Ионизация атомов в переменном электрическом поле // ЖЭТФ. 1966. Т. 50. № 5. С. 1393–1409. Perelomov A.M., Popov V.S., Terent’ev M.V. Ionization of atoms in an alternating electric field // Sov. Phys. JETP. 1966. V. 23. № 5. P. 924–934.
35. Желтиков А.М. Теория фотоионизации Келдыша: сквозь барьеры // УФН. 2017. Т. 60. № 11. P. 1087. С. 1087–1120. http://dx.doi.org/10.3367/UFNr.2017.08.038198 Zheltikov A.M. Keldysh photoionization theory: Through the barriers // Physics-Uspekhi. 2017. V. 60. № 11. P. 1087. https://doi.org/10.3367/ufne.2017.08.038198
36. Bogatskaya A., Gulina Y., Smirnov N., et al. An experimental study of multiphoton ionization in fused silica at IR and visible wavelengths // Photonics. — MDPI. 2023. V. 10. № 5. P. 515. http://doi.org/10.3390/photonics10050515
37. Savitsky I.V., Voronin A.A., Stepanov E.A., et al. Sub-cycle pulse revealed with carrier-envelope phase control of soliton self-compression in anti-resonant hollow-core fiber // Opt. Lett. 2023. V. 48. № 17. P. 4468–4471. http://doi.org/10.1364/OL.499008
38. Travers J.C. Optical solitons in hollow-core fibres // Opt. Commun. 2023. P. 130191. http://doi.org/10.1016/ j.optcom.2023.130191
39. Fedotov A.B., Serebryannikov E.E., Zheltikov A.M. Ionization-induced blueshift of high-peak-power guided-wave ultrashort laser pulses in hollow-core photonic-crystal fibers // Phys. Rev. A. 2007. V. 76. № 5. P. 053811. http://doi.org/10.1103/PhysRevA.76.053811