ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-05-85-94

УДК: 535.37, 544.778.4

Dependence of quantum yield of up-conversion luminescence of powdered NaYF4:Yb,Er samples on ytterbium ion concentration and excitation intensity

For Russian citation (Opticheskii Zhurnal):

Шурухина А.В., Баринов Д.С., Жаровов Д.А., Рудакова А.В., Тананаев П.Н., Янковский Г.М., Барышев А.В., Емелин А.В., Рябчук В.K. Зависимость квантового выхода ап-конверсионной люминесценции порошков NaYF4:Yb,Er от содержания ионов иттербия и интенсивности возбуждения // Оптический журнал. 2024. Т. 91. № 5. С. 85–94. http://doi.org/10.17586/1023-5086-2024-91-05-85-94

 

Shurukhina A.V., Barinov D.S., Zharovov D.A., Rudakova A.V., Tananaev P.N., Yankovskii G.M., Baryshev A.V., Emeline A.V., Ryabchuk V.K. Dependence of quantum yield of upconversion luminescence of powdered NaYF4:Yb,Er samples on ytterbium ion content and excitation intensity // Opticheskii Zhurnal. 2024. V. 91. № 5. P. 85–94. http://doi.org/10.17586/1023-5086-2024-91-05-85-94

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. A series of powdered NaYF4:Yb,Er samples with different ytterbium ion content. Aim of study. Determination of the change in the quantum yield of up-conversion luminescence of NaYF4:Yb,Er as a function of ytterbium ion content the intensity of excitation by laser radiation at a wavelength of 975 nm. Method. Determination of the quantum yield of up-conversion luminescence using a spectrometer and integrating sphere. Main results. The quantum yield of up-conversion luminescence was measured for a series of powdered NaYF4:Yb,Er samples with different ytterbium ions content. The optimal ytterbium ion content corresponding to the maximum efficiency of upconversion was found to be 0.4 at %. Practical significance. The obtained results can be used in optoelectronics, medicine and in the creation of laser facilities.

Keywords:

up-conversion luminescence, fluoride matrices, lanthanides, quantum yield, nonlinear optical processes, concentration dependence

Acknowledgements:

Subject of study. A series of powdered NaYF4:Yb,Er samples with different ytterbium ion content. Aim of study. Determination of the change in the quantum yield of up-conversion luminescence of NaYF4:Yb,Er as a function of ytterbium ion content the intensity of excitation by laser radiation at a wavelength of 975 nm. Method. Determination of the quantum yield of up-conversion luminescence using a spectrometer and integrating sphere. Main results. The quantum yield of up-conversion luminescence was measured for a series of powdered NaYF4:Yb,Er samples with different ytterbium ions content. The optimal ytterbium ion content corresponding to the maximum efficiency of upconversion was found to be 0,4 at %. Practical significance. The obtained results can be used in optoelectronics, medicine and in the creation of laser facilities.

OCIS codes: 260.0260, 160.0160

References:

1. Zhou J., Liu Q., Feng W., et al. Upconversion luminescent materials: advances and applications // Chem. Rev. 2015. V. 115. № 1. P. 395–465. https://doi.org/10.1021/ cr400478f
2. Auzel F. Upconversion and anti-stokes processes with f and d ions in solids // Chem. Rev. 2004. V. 104. P. 139. https://doi.org/10.1021/cr020357g
3. Menyuk N., Dwight K., Pierce J.W. NaYF4:Yb, Er an efficient upconver-sion phosphor // Appl. Phys. Lett. 1972. V. 21. № 4. P. 159–163. https://doi.org/10.1063/1.1654325
4. Bazhukova I.N., Pustovarov V.A., Myshkina A.V., et al. Luminescent nanomaterials doped with rare earth ions and prospects for their biomedical applications (A review). // Opt. Spectrosc. 2020. V. 128. P. 2050–2068. https://doi.org/10.1134/S0030400X20120875
5. Khoroshko L.S., Gaponenko N.V., Rudenko M.V., et al. Erbium lumi-nescence in (Y, Er, Yb)3Al5O12 powders // J. Opt. Technol. 2019. V. 86. № 2. P. 124–128. https://doi.org/10.1364/JOT.86.000124
6. Afanas’ev V.P., Vasil’ev V.N., Ignat’ev A.I., et al. New luminescent glasses and prospects of using them in solar energy // J. Opt. Technol. 2013. V. 80. № 10. P. 635–641. https://doi.org/10.1364/JOT.80.000635
7. Charu D., Anjana Y., Diksha B., et al. Impact of crystal structure on optical properties and temperature sensing behavior of NaYF4:Yb3+/Er3+ nanoparticles // RSC Adv. 2023. V. 13. P. 20975. https://doi.org/10.1039/D3RA03148A
8. Krämer K.W., Biner D., Frei G., et al. Hexagonal sodium yttrium fluoridebased green and blue emitting upconversion phosphors // Chem. Mater. 2004. V. 16. P. 1244–1251. https://doi.org/10.1021/cm031124o
9. Yi G.S., Chow G.M. Synthesis of hexagonal phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence // Advanced Functional Materials. 2006. V. 16. № 18. P. 2324–2329. https://doi.org/10.1002/adfm.200600053
10. Nadort A., Zhao J., Goldys E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties // Nanoscale. 2016. V. 8. № 27. P. 13099–13130. https://doi.org/10.1039/C5NR08477F
11. Orlovskii Yu.V., Basiev T.T., Pukhov K.K., et al. Multiphonon relaxation of mid IR transitions of rare-earth ions in fluorite type crystals // Advanced Solid-State Photonics 2004. Santa Fe, New Mexico, United States. February 1–4, 2004. Paper WB9.
12. Yamada N., Shionoya S., Kushida T. Phonon-assisted energy transfer between trivalent rare earth ions // J. Phys. Soc. Japan. 1972. V. 32. № 6. P. 1577–1586. https://doi.org/10.1143/JPSJ.32.1577
13. Lin C., Berry M.T., Anderson R., et al. Highly luminescent NIR-to-visible upconversion thin films and monoliths requiring no high-temperature treatment // Chem. Mater. 2009. V. 21. P. 3406–3413. https://doi.org/10.1021/cm901094m
14. Jin Y., Qin W., Zhang J. Preparation and optical properties of SrF2:Eu3+ nanospheres // J. Fluor. Chem. 2008. V. 29. P. 515–518. https://doi.org/10.1016/j.jfluchem.2008.03.010
15. Yagoub M.Y.A., Swart H.C., Noto L.L., et al. The effects of Eu-concentrations on the luminescent properties of SrF2:Eu nanophosphor // J. Lumin. 2014. V. 156. P. 150–156. https://doi.org/10.1016/j.jlumin. 2014.08.014
16. Zhang C., Hou Z., Chai R., et al. Mesoporous SrF2 and SrF2:Ln3+ (Ln = Ce, Tb, Yb, Er) hierarchical microspheres: Hydrothermal synthesis, growing mechanism, and luminescent properties // J. Phys. Chem. 2010. V. 114. P. 6928–6936. https://doi.org/10.1021/ jp911775z
17. Peng J., Hou S., Liu X., et al. Hydrothermal synthesis and luminescence properties of hierarchical SrF2 and SrF2:Ln3+ (Ln = Er, Nd, Yb, Eu, Tb) micro/nanocomposite architectures // Mat. Res. Bull. 2012. V. 47.
P. 328–332. https://doi.org/10.1016/j.materresbull. 2011.11.030
18. Sun J., Xian J., Zhang X., Du H. Hydrothermal synthesis of SrF2:Yb3+/Er3+ micro-/nanocrystals with multiform morphologies and up-conversion properties // J. Rare Earth. 2011. V. 29. P. 32–38. https://doi.org/10.1016/S1002-0721(10)60396-1
19. Sun J., Xian J., Du H. Facile synthesis of well-dispersed SrF2:Yb3+/Er3+ upconversion nanocrystals in oleate complex systems // Appl. Surf. Sci. 2011. V. 257. P. 3592–3595. https://doi.org/10.1016/j.apsusc. 2010.11.082
20. Yagoub M.Y.A., Swart H.C., Noto L.L., et al. Surface characterization and photoluminescence properties of Ce3+, Eu co-doped SrF2 nanophosphor // Materials. 2015. V. 8. P. 2361–2375. https://doi.org/10.3390/ ma8052361