ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-06-121-133

УДК: 54.057, 546.05, 620.3

Lead-free metal halide perovskite nanocrystals: synthesis and optical properties. Review

For Russian citation (Opticheskii Zhurnal):
Тимкина Ю.А., Скурлов И.Д., Литвин А.П., Ушакова Е.В. Бессвинцовые нанокристаллы перовскита: методы синтеза и их оптические свойства. Обзор // Оптический журнал. 2024. Т. 91. № 6. С. 121–133. http://doi.org/10.17586/1023-5086-2024-91-06-121-133

 

Timkina Yu.A., Skurlov I.D., Litvin A.P., Ushakova E.V. Lead-free metal halide perovskite nanocrystals: synthesis and optical properties. Review [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 121–133. http://doi.org/10.17586/1023-5086-2024-91-06-121-133

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Lead-free perovskite nanocrystals, their main characteristics, synthesis methods and optical properties. Aim. Analysis of the state-of-the-art published research data on the lead-free perovskite nanocrystals synthesis methods and optical properties. Determination of the the lead-free perovskite nanocrystals formation processes, as well as the main synthesis methods. Establishing the dependences of nanocrystal size and photoluminescence quantum yield on synthesis parameters, such as the method, temperature, and ligand type. Results. It was determined that the formation of the lead-free perovskite nanocrystals occurs according to the Lamer and cluster models. Analysis of the literature data has shown that the main methods for obtaining the lead-free perovskite nanocrystals are hot injection and ligand-assisted reprecipitation. It has been shown that an increase in the reaction temperature leads to an increase in the average the lead-free perovskite nanocrystals size. It was found that for the lead-free perovskite nanocrystals obtained by ligand-assisted reprecipitation an increase in the reaction temperature to 100 °C leads to a slight decrease in the quantum yield, while for the leadfree perovskite nanocrystals obtained by hot injection, the value of the photoluminescence quantum yield is essentially independent of temperature. It was shown that the use of oleic acid as a ligand leads to the formation of the lead-free perovskite nanocrystals with a narrower size distribution, while the highest values of the photoluminescence quantum yield were observed for the lead-free perovskite nanocrystals synthesized in the presence of a mixture of ligands. Practical significance. An analysis of literature sources has shown that the most promising method for the lead-free perovskite nanocrystals synthesis is the ligand-assisted reprecipitation method, since it is easier to implement, more energyefficient, and is easier to scale. The the lead-free perovskite nanocrystals obtained by this method can
be used as active materials for sensorics, photovoltaics, and optoelectronic devices.

Keywords:

nanocrystals, perovskites, lead-free perovskites, colloidal synthesis, statistics

Acknowledgements:
this work was supported by the Russian Science Foundation, Project No. 21-73-10131.

OCIS codes: 250.5230, 230.5160, 230.5170, 160.3220, 160.1245

References:

1. Stranks S.D., Eperon G.E., Grancini G. et al. Electronhole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber // Science. 2013. V. 342. № 6156. P. 341–344. https://doi.org/10.1126/science.1243982
2. Swarnkar A., Chulliyil R., Ravi V.K. et al. Colloidal CsPbBr3 perovskite nanocrystals: Luminescence beyond traditional quantum dots // Angew. Chemie Int. Ed. 2015. V. 54. № 51. P. 15424–15428. https://doi.org/10.1002/anie.201508276
3. Xing G., Mathews N., Sun S. et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 // Science. 2013. V. 342. № 6156. P. 344–347. https://doi.org/10.1126/science.1243167
4. Etgar L., Gao P., Xue Z., et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells // J. Am. Chem. Soc. 2012. V. 134. № 42. P. 17396–17399. https://doi.org/10.1021/ja307789s
5. Heo J.-M., Cho H., Lee S.-C. et al. Bright lead-free inorganic CsSnBr3 perovskite light-emitting diodes // ACS Energy Lett. 2022. V. 7. № 8. P. 2807–2815. https://doi.org/10.1021/acsenergylett.2c01010
6. Dong H., Zhang C., Liu X. et al. Materials chemistry and engineering in metal halide perovskite lasers // Chem. Soc. Rev. 2020. V. 49. № 3. P. 951–982. https://doi.org/10.1039/C9CS00598F
7. Hu F., Zhang H., Sun C. et al. Superior optical properties of perovskite nanocrystals as single photon emitters // ACS Nano. 2015. V. 9. № 12. P. 12410–12416. https://doi.org/10.1021/acsnano.5b05769
8. Ren M., Qian X., Chen Y. et al. Potential lead toxicity and leakage issues on lead halide perovskite photovoltaics // J. Hazard. Mater. 2022. V. 426. P. 127848. https://doi.org/10.1016/j.jhazmat.2021.127848
9. Schileo G., Grancini G. Halide perovskites: current issues and new strategies to push material and device stability // J. Phys. Energy. 2020. V. 2. № 2. P. 021005. https://doi.org/10.1088/2515-7655/ab6cc4
10. Sa R., Zha W., Ma Z., et al. Stable lead-free perovskite solar cells: A first-principles investigation // Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020. V. 239. P. 118493. https://doi.org/10.1016/j.saa.2020.118493
11. Ushakova E.V., Cherevkov S.A., Kuznetsova V.A. et al. Lead-free perovskites for lighting and lasing applications: A minireview // Materials (Basel). 2019. V. 12. № 23. P. 3845. https://doi.org/10.3390/ma12233845
12. Shalan A.E., Kazim S., Ahmad S. Lead-free perovskites: Metals substitution towards environmentally benign solar cell fabrication // ChemSusChem. 2019. V. 12. № 18. P. 4116–4139. https://doi.org/10.1002/cssc.201901296
13. Nasti G., Abate A. Tin halide perovskite (ASnX3) solar cells: A comprehensive guide toward the highest power conversion efficiency // Adv. Energy Mater. 2020. V. 10. № 13. P. 1902467. https://doi.org/10.1002/aenm.201902467
14. Mehrabian M., Norouzi Afshar E. Improving the efficiency of solar cells based on CsSn0.5Ge0.5I3 perovskite by using ZnO nanorods // J. Opt. Technol. 2022. V. 89. № 5. P. 302. https://doi.org/10.1364/JOT.89.000302
15. Meng X., Tang T., Zhang R. et al. Optimization of germanium-based perovskite solar cells by SCAPS simulation // Opt. Mater. (Amst). 2022. V. 128. P. 112427. https://doi.org/10.1016/j.optmat.2022.112427
16. Abdelhady A.L., Saidaminov M.I., Murali B. et al. Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals // J. Phys. Chem. Lett. 2016. V. 7. № 2. P. 295–301. https://doi.org/10.1021/acs.jpclett.5b02681
17. Yang Y., Liu C., Cai M., et al. Dimension-controlled growth of antimony-based perovskite-like halides for lead-free and semitransparent photovoltaics // ACS Appl. Mater. Interfaces. 2020. V. 12. № 14. P. 17062–17069. https://doi.org/10.1021/acsami.0c00681
18. Hoefler S.F., Trimmel G., Rath T. Progress on lead-free metal halide perovskites for photovoltaic applications: a review // Monatshefte für Chemie — Chem. Mon. 2017. V. 148. № 5. P. 795–826. https://doi.org/10.1007/s00706-017-1933-9
19. Akkerman Q.A., Manna L. What defines a halide perovskite? // ACS Energy Lett. 2020. V. 5. № 2. P. 604–610. https://doi.org/10.1021/acsenergylett.0c00039
20. Zhang J., Yang Y., Deng H. et al. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots // ACS Nano. 2017. V. 11. № 9. P. 9294–9302. https://doi.org/10.1021/acsnano.7b04683
21. Akkerman Q.A., Martínez-Sarti L., Goldoni L. et al. Molecular iodine for a general synthesis of binary and ternary inorganic and hybrid organic–inorganic iodide nanocrystals // Chem. Mater. 2018. V. 30. № 19. V. 6915–6921. https://doi.org/10.1021/acs.chemmater. 8b03295
22. Jellicoe T.C., Richter J.M., Glass H.F.J. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals // J. Am. Chem. Soc. American Chemical Society. 2016. V. 138. № 9. P. 2941–2944. https://doi.org/10.1021/jacs.5b13470
23. Li Y., Vashishtha P., Zhou Z. et al. Room temperature synthesis of stable, printable Cs3Cu2X5 (X = I, Br/I, Br, Br/Cl, Cl) colloidal nanocrystals with near-unity quantum yield green emitters (X = Cl) // Chem. Mater. 2020. V. 32. № 13. P. 5515–5524. https://doi.org/10.1021/acs. chemmater.0c00280
24. Yang B., Chen J., Yang S. et al. Lead-free silver bismuth halide double perovskite nanocrystals // Angew. Chemie. 2018. V. 130. № 19. С. 5457–5461. https://doi.org/10.1002/ange.201800660
25. Pecunia V., Occhipinti L.G., Chakraborty A. et al. Leadfree halide perovskite photovoltaics: Challenges, open questions, and opportunities // APL Mater. 2020. V. 8. № 10. P. 100901 https://doi.org/10.1063/5.0022271
26. LaMer V.K., Dinegar R.H. Theory, production and mechanism of formation of monodispersed hydrosols // J. Am. Chem. Soc. 1950. V. 72. № 11. P. 4847–4854. https://doi.org/10.1021/ja01167a001
27. Cölfen H., Antonietti M. Mesocrystals and nonclassical crystallization. Weinheim: Wiley-VCH Verlag, 2008. 276 p. https://doi.org/10.1002/9780470994603
28. Peng L., Dutta A., Xie R. et al. Dot–wire–platelet–cube: Step growth and structural transformations in CsPbBr3 perovskite nanocrystals // ACS Energy Lett. 2018. V. 3. № 8. P. 2014–2020. https://doi.org/10.1021/acsenergylett.8b01037
29. Su S., Tao J., Sun C. et al. Stable and highly efficient blue-emitting CsPbBr3 perovskite nanomaterials via kinetic-controlled growth // Chem. Eng. J. 2021. V. 419. P. 129612. https://doi.org/10.1016/j.cej.2021.129612
30. Guozhong Cao. Zero-dimensional nanostructures: Nanoparticles // World Scientific Series in Nanoscience and Nanotechnology. 2011. V. 2. P. 61–141.
31. Wang A., Yan X., Zhang M. et al. Controlled synthesis of lead-free and stable perovskite derivative Cs2SnI6 nanocrystals via a facile hot-injection process // Chem. Mater. American Chemical Society. 2016. V. 28. № 22. P. 8132–8140. https://doi.org/10.1021/acs. chemmater.6b01329
32. Leng M., Yang Y., Zeng K. et al. All-inorganic bismuthbased perovskite quantum dots with bright blue photoluminescence and excellent stability // Adv. Funct. Mater. 2018. V. 28. № 1. P. 1704446. https://doi.org/10.1002/adfm.201704446
33. Lee D.D.D., Kim M.H., Woo H.-Y.Y. et al. Heating-up synthesis of cesium bismuth bromide perovskite nanocrystals with tailored composition, morphology, and optical properties // RSC Adv. Royal Society of Chemistry. 2020. V. 10. № 12. P. 7126–7133. https://doi.org/10.1039/C9RA10106C
34. Protesescu L., Yakunin S., Bodnarchuk M.I. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut // Nano Lett. 2015. V. 15. № 6. P. 3692–3696. https://doi.org/10.1021/nl5048779
35. Veronese A., Patrini M., Bajoni D. et al. Highly tunable emission by halide engineering in lead-free perovskitederivative nanocrystals: The Cs2SnX6 (X = Cl, Br, Br/I, I) System // Front. Chem. 2020. V. 8. P. 35. https://doi.org/10.3389/fchem.2020.00035
36. Kim W., Koo B., Ko M.J. et al. Hot-injection synthesis of lead-free pseudo-alkali metal-based perovskite (TlSnX3) nanoparticles with tunable optical properties // Front. Mater. 2023. V. 10. P. 1–8. https://doi.org/10.3389/fmats.2023.1298188
37. Li D., Chen C.-S., Wu Y.-H. et al. Improving stability of cesium lead iodide perovskite nanocrystals by solution surface treatments // ACS Omega. 2020. V. 5. № 29. P. 18013–18020. https://doi.org/10.1021/acsomega.0c01403
38. Ghosh S., Nim G.K., Bansal P. et al. Investigating the property of water driven lead-free stable inorganic halide double perovskites // J. Colloid Interface Sci. 2021. V. 582. P. 1223–1230. https://doi.org/10.1016/j.jcis.2020.08.114

39. Bekenstein Y., Dahl J.C., Huang J. et al. The making and breaking of lead-free double perovskite nanocrystals of cesium silver-bismuth halide compositions // Nano Lett. 2018. V. 18. № 6. P. 3502–3508. https://doi.org/10.1021/acs.nanolett.8b00560
40. Yang P., Liu G., Liu B. et al. All-inorganic Cs2CuX4 (X = Cl, Br, and Br/I) perovskite quantum dots with blue-green luminescence // Chem. Commun. 2018. V. 54. № 82. P. 11638–11641. https://doi.org/10.1039/C8CC07118G
41. Kar M.R., Sahoo M.R., Nayak S.K. et al. Synthesis and properties of lead-free formamidinium bismuth bromide perovskites // Mater. Today Chem. 2021. V. 20. P. 100449. https://doi.org/10.1016/j.mtchem. 2021.100449
42. Leng M., Chen Z., Yang Y. et al. Lead-free, blue emitting bismuth halide perovskite quantum dots // Angew. Chemie Int. 2016. V. 55. № 48. P. 15012–15016. https://doi.org/10.1002/anie.201608160
43. Leng M., Yang Y., Chen Z. et al. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission // Nano Lett. 2018. V. 18. № 9. P. 6076–6083. https://doi.org/10.1021/acs. nanolett.8b03090
44. Huang H., Li Y., Tong Y. et al. Spontaneous crystallization of perovskite nanocrystals in nonpolar organic solvents: A versatile approach for their shapecontrolled synthesis // Angew. Chemie — Int. 2019. V. 58. № 46. P. 16558–16562. https://doi.org/10.1002/ anie.201906862
45. Fan Q., Biesold-McGee G. V., Ma J. et al. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties // Angewandte Chemie — International Edition. 2020. V. 59. № 3. P. 1030–1046. https://doi.org/10.1002/
anie.201904862
46. Zhang F., Zhong H., Chen C. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology // ACS Nano. American Chemical Society. 2015. V. 9. № 4. P. 4533–4542. https://doi.org/10.1021/acsnano.5b01154
47. Tsiwah E.A., Ding Y., Li Z. et al. One-pot scalable synthesis of all-inorganic perovskite nanocrystals with tunable morphology, composition and photoluminescence // Cryst Eng Comm. Royal Society of Chemistry. 2017. V. 19. № 46. P. 7041–7049. https://doi.org/ 10.1039/C7CE01749A
48. Van Embden J., Chesman A.S.R., Jasieniak J.J. The heat-up synthesis of colloidal nanocrystals // Chemistry of Materials. American Chemical Society. 2015. V. 27. № 7. V. 2246–2285. https://doi.org/10.1021/cm5028964
49. Liu Z., Yu Z., Li W., et al. Scalable one-step heating up synthesis of Cu2ZnSnS4 nanocrystals hole conducting materials for carbon electrode based perovskite solar cells // Sol. Energy. Elsevier Ltd. 2021. Т. 224. С. 51–57. https://doi.org/10.1016/j.solener.2021.05.089
50. Chigari Swapna Shambulinga, Vidyasagar C.C., Vishwanath C.C., Sanakousar Faniband M., Vinay Kumar B., Raghu A.V. Ultrasonic radiation assisted synthesis of (CH3NH3)2CuCl4, CH3NH3PbCl3, and CH3NH3SnCl3 perovskites for energy application // J. Hazard. Mater. Adv. 2023. V. 12. P. 100368. https://doi.org/10.1016/j.hazadv.2023.100368
51. Rao L., Tang Y., Song C. et al. Polar-solvent-free synthesis of highly photoluminescent and stable CsPbBr3 nanocrystals with controlled shape and size by ultrasonication // Chem. Mater. American Chemical Society. 2019. V. 31. № 2. P. 365–375. https://doi.org/10.1021/acs.chemmater.8b03298
52. Rao L., Ding X., Du X. et al. Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation // Beilstein J. Nanotechnol. 2019. V. 10. С. 666–676. https://doi.org/10.3762/bjnano.10.66
53. Tang X., Wen X., Yang F. Ultra-stable blue-emitting lead-free double perovskite Cs2SnCl6 nanocrystals enabled by an aqueous synthesis on a microfluidic platform // Nanoscale. 2022. V. 14. № 47. P. 17641–17653. https://doi.org/10.1039/D2NR05510D
54. Phillips T.W., Lignos I.G., Maceiczyk R.M. et al. Nanocrystal synthesis in microfluidic reactors: Where next? // Lab Chip. Royal Society of Chemistry. 2014. V. 14. № 17. P. 3172–3180. https://doi.org/10.1039/ c4lc00429a
55. Niu G., Ruditskiy A., Vara M. et al. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors // Chem. Soc.Rev. Royal Society of Chemistry. 2015. V. 44. № 16. P. 5806–5820. https://doi.org/10.1039/C5CS00049A
56. Mai H., Li X., Lu J. et al. Synthesis of Layered leadfree perovskite nanocrystals with precise size and shape control and their photocatalytic activity // J. Am. Chem. Soc. 2023. V. 145. № 31. P. 17337–17350. https://doi.org/10.1021/jacs.3c04890
57. Shen Y., Roberge A., Tan R. et al. Gel permeation chromatography as a multifunctional processor for nanocrystal purification and on-column ligand exchange chemistry // Chem. Sci. Royal Society of Chemistry. 2016. V. 7. № 9. P. 5671–5679. https://doi.org/10.1039/C6SC01301E
58. Lignos I., Maceiczyk R., DeMello A.J. Microfluidic technology: uncovering the mechanisms of nanocrystal nucleation and growth // Acc. Chem. Res. American Chemical Society. 2017. V. 50. № 5. P. 1248–1257. https://doi.org/10.1021/acs.accounts.7b00088
59. Sadeghi S., Bateni F., Kim T. et al. Autonomous nanomanufacturing of lead-free metal halide perovskite nanocrystals using a self-driving fluidic lab // Nanoscale. 2024. V. 16. № 2. P. 580–591. https://doi.org/10.1039/D3NR05034C
60. Zhou L., Xu Y.F., Chen B.X. et al. Synthesis and photocatalytic application of stable lead-free Cs2AgBiBr6 perovskite nanocrystals // Small. 2018. V. 14. № 11. P. 1703762. https://doi.org/10.1002/smll.201703762
61. Liu G.-N., Zhao R.-Y., Xu B. et al. Design, synthesis, and photocatalytic application of moisture-stable hybrid lead-free perovskite // ACS Appl. Mater. Interfaces. 2020. V. 12. № 49. P. 54694–54702. https://doi.org/10.1021/acsami.0c16107
62. Wang A., Guo Y., Muhammad F. et al. Controlled synthesis of lead-free cesium tin halide perovskite cubic nanocages with high stability // Chem. Mater. 2017. V. 29. № 15. P. 6493–6501. https://doi.org/10.1021/ acs.chemmater.7b02089
63. Cheng P., Sun L., Feng L. et al. Colloidal synthesis and optical properties of all inorganic low dimensional cesium copper halide nanocrystals // Angew. Chemie. 2019. V. 131. № 45. V. 16233–16237. https://doi.org/10.1002/ange.201909129
64. Han P., Mao X., Yang S. et al. Lead-free sodium–indium double perovskite Nanocrystals through doping silver cations for bright yellow emission // Angew.  Chemie. 2019. V. 131. № 48. P. 17391–17395. https://doi.org/10.1002/ange.201909525
65. Xu D., Wan Q., Wu S. et al. Enhancing the performance of LARP-synthesized CsPbBr3 nanocrystal LEDs by employing a dual hole injection layer // RSC Adv. Royal Society of Chemistry. 2020. V. 10. № 30. P. 17653–17659. https://doi.org/10.1039/D0RA02622K
66. Sun Q., Ye W., Wei J. et al. Lead-free perovskite Cs3Bi2Br9 heterojunctions for highly efficient and selective photocatalysis under mild conditions // J. Alloys Compd. 2022. V. 893. P. 162326. https://doi.org/10.1016/j.jallcom.2021.162326
67. Wang X., Shen Q., Chen Y. et al. Bright luminescence of Sb doping in all-inorganic zinc halide perovskite variant // J. Alloys Compd. 2022. V. 895. P. 162610. https://doi.org/10.1016/j.jallcom.2021.162610
68. Ba Q., Kim J., Im H. et al. Modulation of the optical bandgap and photoluminescence quantum yield in pnictogen (Sb3+/Bi3+)-doped organic–inorganic tin (IV) perovskite single crystals and nanocrystals //  J. Colloid Interface Sci. 2022. V. 606. P. 808–816. https://doi.org/10.1016/j.jcis.2021.08.083
69. Creutz S.E., Crites E.N., De Siena M.C. et al. Colloidal nanocrystals of lead-free double-perovskite (elpasolite) semiconductors: Synthesis and anion exchange to access new materials // Nano Lett. American Chemical Society. 2018. V. 18. № 2. P. 1118–1123. https://doi.org/10.1021/acs.nanolett.7b04659
70. Yao M., Wang L., Yao J. et al. Improving lead-free double perovskite Cs2 NaBiCl6 nanocrystal optical properties via ion doping // Adv. Opt. Mater. 2020. V. 8. № 8. P. 1901919. https://doi.org/10.1002/adom.201901919
71. Wang X.-D., Miao N.-H., Liao J.-F., et al. The topdown synthesis of single-layered Cs4CuSb2Cl12 halide perovskite nanocrystals for photoelectrochemical application // Nanoscale. 2019. V. 11. № 12. P. 5180–5187. https://doi.org/10.1039/C9NR00375D
72. Zhou J., An K., He P. et al. Solution processed lead-free perovskite nanocrystal scintillators for high resolution X-ray CT imaging // Adv. Opt. Mater. 2021. V. 9. № 11. P. 2002144. https://doi.org/10.1002/adom.202002144
73. Hu Q., Niu G., Zheng Z. et al. Tunable сolor temperatures and efficient white emission from Cs2Ag1–xNaxIn1–yBiyCl6 double perovskite nanocrystals // Small. 2019. V. 15. № 44. P. 1903496. https://doi.org/10.1002/smll.201903496
74. Tran M.N., Cleveland I.J., Pustorino G.A. et al. Efficient near-infrared emission from lead-free ytterbiumdoped cesium bismuth halide perovskites // J. Mater. Chem. A. 2021. V. 9. № 22. P. 13026–13035. https://doi.org/10.1039/D1TA02147H
75. Kaiukov R., Almeida G., Marras S. et al. Cs3Cu4In2Cl13 nanocrystals: A perovskite-related structure with inorganic clusters at a sites // Inorg. Chem. 2020. V. 59. № 1. P. 548–554. https://doi.org/10.1021/acs.inorgchem.9b02834
76. Dai L., Deng Z., Auras F. et al. Slow carrier relaxation in tin-based perovskite nanocrystals // Nat. Photonics. 2021. V. 15. № 9. P. 696–702. https://doi.org/10.1038/s41566-021-00847-2
77. Levy S., Khalfin S., Pavlopoulos N.G. et al. The role silver nanoparticles plays in silver-based double-perovskite nanocrystals // Chem. Mater. 2021. V. 33. № 7. P. 2370–2377. https://doi.org/10.1021/acs.chemmater.0c04536
78. Abfalterer A., Shamsi J., Kubicki D.J. et al. Colloidal synthesis and optical properties of perovskite-inspired cesium zirconium halide nanocrystals // ACS Ma-ter. Lett. 2020. V. 2. № 12. P. 1644–1652. https://doi.org/10.1021/acsmaterialslett.0c00393
79. Santhana V., Greenidge D.C., Thangaraju D. et al. Synthesis and emission characteristics of lead-free novel Cs4SnBr6/SiO2 nanocomposite // Mater. Lett. 2020. V. 280. P. 128562. https://doi.org/10.1016/j.matlet.2020.128562
80. Huang J., Lei T., Siron M. et al. Lead-free cesium europium halide perovskite nanocrystals // Nano Lett. 2020. V. 20. № 5. P. 3734–3739. https://doi.org/10.1021/acs.nanolett.0c00692
81. Han X., Liang J., Yang J. et al. Lead-free double perovskite Cs2SnX6: Facile solution synthesis and excellent stability // Small. 2019. V. 15. № 39. P. 1901650. https://doi.org/10.1002/smll.201901650
82. Hai Y., Huang W., Li Z. et al. Morphology regulation and photocatalytic CO2 reduction of lead-free perovskite Cs3Sb2I9 microcrystals // ACS Appl. Energy Mater. 2021. V. 4. № 6. P. 5913–5917. https://doi.org/10.1021/acsaem.1c00722
83. Grandhi G., Matuhina A., Liu M. et al. Lead-free cesium titanium bromide double perovskite nanocrystals // Nanomaterials. 2021. V. 11. № 6. P. 1458. https://doi.org/10.3390/nano11061458
84. Yang B., Chen J., Hong F. et al. Lead-free, air stable all inorganic cesium bismuth halide perovskite nanocrystals // Angew. Chemie Int. Ed. 2017. V. 56. № 41. P. 12471–12475. https://doi.org/10.1002/anie. 201704739
85. Peng K., Yu L., Min X., et al. The synthesis of leadfree double perovskite Cs2Ag0.4Na0.6InCl6 phosphor with improved optical properties via ion doping // J. Alloys Compd. 2022. V. 891. P. 161978. https://doi.org/10.1016/j.jallcom.2021.161978
86. Arfin H., Kaur J., Sheikh T. et al. Bi3+-Er3+ and Bi3+-Yb3+ codoped Cs2AgInCl6 double perovskite near-infrared emitters // Angew. Chemie — Int. 2020. V. 59. № 28. P. 11307–11311. https://doi.org/10.1002/anie.202002721
87. Qi Z., Fu X., Yang T. et al. Highly stable lead-free Cs3Bi2I9 perovskite nanoplates for photodetection applications // Nano Res. 2019. V. 12. № 8. P. 1894–1899. https://doi.org/10.1007/s12274-019-2454-0
88. Wu X., Song W., Li Q. et al. Synthesis of lead-free CsGeI3 perovskite colloidal nanocrystals and electron beam induced transformations // Chem. — An Asian J. 2018. V. 13. № 13. P. 1654–1659. https://doi.org/10.1002/asia.201800573
89. Zheng W., Sun R., Liu Y. et al. Excitation management of lead-free perovskite nanocrystals through doping // ACS Appl. Mater. Interfaces. 2021. V. 13. № 5. V. 6404–6410. https://doi.org/10.1021/acsami.0c20230
90. Liga S.M., Konstantatos G. Colloidal synthesis of leadfree Cs2TiBr6–xIx perovskite nanocrystals // J. Mater. Chem. C. 2021. V. 9. № 34. P. 11098–11103. https://doi.org/10.1039/D1TC01732B
91. Cai T., Shi W., Hwang S. et al. Lead-free Cs4CuSb2Cl12 layered double perovskite nanocrystals // J. Am. Chem. Soc. 2020. V. 142. № 27. P. 11927–11936. https://doi.org/10.1021/jacs.0c04919
92. Wang L., Shi Z., Ma Z. et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h // Nano Lett. 2020. V. 20. № 5. P. 3568–3576. https://doi.org/10.1021/acs.nanolett.0c00513

93. Ma Z., Shi Z., Yang D. et al. Electrically-driven violet light-emitting devices based on highly stable leadfree perovskite Cs3Sb2Br9 quantum dots // ACS Energy Lett. 2020. V. 5. № 2. P. 385–394. https://doi.org/10.1021/acsenergylett.9b02096
94. Liu Y., Jing Y., Zhao J. et al. Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4% photoluminescence quantum yield // Chem. Mater. American Chemical Society. 2019. V. 31. № 9. P. 3333–3339. https://doi.org/10.1021/acs. chemmater.9b00410
95. Shankar H., Jha A., Kar P. Water-assisted synthesis of lead-free Cu based fluorescent halide perovskite nanostructures // Mater. Adv. 2022. V. 3. № 1. P. 658–664. https://doi.org/10.1039/D1MA00849H
96. Shen Y., Yin J., Cai B. et al. Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots // Nanoscale Horizons. 2020. V. 5. № 3. P. 580–585. https://doi.org/10.1039/ C9NH00685K
97. Ye W., He J., Cao Q. et al. Surfactant free, one step synthesis of lead-free perovskite hollow nanospheres for trace CO detection // Adv. Mater. 2021. V. 33. № 24. P. 2100674. https://doi.org/10.1002/adma. 202100674.
98. Sakai N., Haghighirad A.A., Filip M.R. et al. Solution-processed cesium hexabromopalladate (IV), Cs2PdBr6, for optoelectronic applications // J. Am. Chem. Soc. 2017. V. 139. № 17. P. 6030–6033. https://doi.org/10.1021/jacs.6b13258
99. Pal J., Manna S., Mondal A. et al. Colloidal synthesis and photophysics of M3Sb2I9 (M = Cs and Rb) nanocrystals: Lead-free perovskites // Angew. Chemie Int. 2017. V. 56. № 45. P. 14187–14191. https://doi.org/10.1002/anie.201709040
100. Zhang Y., Yin J., Parida M.R. et al. Direct-indirect nature of the bandgap in lead-free perovskite nanocrystals // J. Phys. Chem. Lett. 2017. V. 8. № 14. P. 3173–3177. https://doi.org/10.1021/acs.jpclett.7b01381
101. Liu S., Yang B., Chen J. et al. Efficient thermally activated delayed fluorescence from all inorganic cesium zirconium halide perovskite nanocrystals // Angew. Chemie Int. 2020. V. 59. № 49. P. 21925–21929. https://doi.org/10.1002/anie.202009101
102. Dahl J.C., Osowiecki W.T., Cai Y. et al. Probing the stability and band gaps of Cs2AgInCl6 and Cs2AgSbCl6 lead-free double perovskite nanocrystals // Chem. Mater. 2019. V. 31. № 9. P. 3134–3143. https://doi.org/10.1021/acs.chemmater.8b04202
103. Xie J.-L., Huang Z.-Q., Wang B. et al. New lead-free perovskite Rb7Bi3Cl16 nanocrystals with blue luminescence and excellent moisture-stability // Nanoscale. 2019. V. 11. № 14. P. 6719–6726. https://doi.org/10.1039/C9NR00600A
104. Timkina Y.A., Tuchin V.S., Litvin A.P. et al. Ytterbium-doped lead–halide perovskite nanocrystals: Synthesis, near-infrared emission, and open-source machine learning model for prediction of optical properties // Nanomaterials. 2023. V. 13. № 4. P. 744. https://doi.org/10.3390/nano13040744
105. Tuchin V.S., Stepanidenko E.A., Vedernikova A.A. et al. Optical properties prediction for red and near-infrared emitting carbon dots using machine learning // Small. 2024. First published 11 Feb. 2024. https://doi.org/10.1002/smll.202310402