DOI: 10.17586/1023-5086-2024-91-06-18-29
УДК: 620.3, 535.372, 535.34
Yb-doped AgBiS2 and AgInS2 nanocrystals: towards near-infrared emission
Full text on elibrary.ru
Карамышева С.П., Черевков С.А., Мирущенко М.Д., Алейник И.А., Татаринов Д.А., Ушакова Е.В. Нанокристаллы AgBiS2 и AgInS2, легированные иттербием: на пути к ближнему инфракрасному излучению // Оптический журнал. 2024. Т. 91. № 6. С. 18–29. http://doi.org/ 10.17586/1023-5086-2024-91-06-18-29
Karamysheva S.P., Cherevkov S.A., Miruschenko M.D., Aleinik I.A., Tatarinov D.A., Ushakova E.V. Yb-doped AgBiS2 and AgInS2 nanocrystals: towards near-infrared emission // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 18–29. http://doi.org/ 10.17586/1023-5086-2024-91-06-18-29
Subject of study. In this work the spectral features of nanocrystals of ternary composition I-V-VI2 and I-III-VI2 doped with the rare earth metal, ytterbium, are investigated and described. Purpose of the study. The main purpose of the work was to develop a new synthesis method of this nanocrystals type for further study of their optical and morphological properties. Method. The average sizes of AgInS2:Yb and AgBiS2:Yb nanocrystals were analysed using atomic force microscopy and dynamic light scattering method and compared with each other. Spectrophotometry and spectrofluorimetry were used to record the absorption and photoluminescence spectra of the substances, respectively. For a deeper investigation of the electronic structure of the synthesised materials, the photoluminescence attenuation kinetics was recorded using a laser scanning luminescence microscope. Main results. The morphological analysis showed that as a result of one-step synthesis on the basis of AgInS2 matrix nanocrystals of smaller size than the comparison sample are formed, and in two-step synthesis the average sizes of nanocrystals exceed the size of the comparison sample by 1.5 times. The absorption spectra of AgInS2:Yb and AgBiS2:Yb samples and their comparison samples correspond to the typical absorption spectra of semiconductor nanocrystals of ternary compounds. The absorption spectrum of AgBiS2:Yb nanocrystals in contrast to AgInS2:Yb has a wide range: from 300 to 1300 nm. In the photoluminescence spectra of AgInS2 and AgInS2:Yb nanocrystals, almost no shift of the band maximum is observed, and the photoluminescence typical of the Yb ion is absent. It was found that the weighted average blanking times of photoluminescence of AgInS2:Yb nanocrystals can be controlled by doping with ytterbium. Photoluminescence of AgBiS2 and AgBiS2:Yb samples was not detected in the red and near-infrared regions. Practical significance. Material of this type can be used for the production of absorption layer of solar cells, as well as sensorabilisers for
photodynamic and photothermal therapy. Further study of isotropic samples of such nanocrystals will allow not only to expand their application, but also to improve the physical properties of nanoparticles in the long term.
nanocrystals, ternary compounds, doping, rare earth metals, photoluminescence, photoluminescence kinetics, atomic force microscopy
Acknowledgements:the authors express their gratitude to the ITMO University Core Facility Center “Nanotechnologies”. The authors thank the Federal Academic Leadership Program “Priority 2030” for financial support.
OCIS codes: 300.6280, 300.6340, 300.6550, 160.2540, 160.4236, 160.4760
References:1. Reshma V.G., Mohanan P.V. Quantum dots: Applications and safety consequences // J Lumin. 2019. V. 205. P. 287–298. https://doi.org/10.1016/j.jlumin. 2018.09.015
2. Olkhova A.A., Patrikeeva A.A., Dubkova M.A. Modification of optical and electrical properties of lead selenide PbSe films by nanosecond laser pulses with a wavelength of 1.064 microns // Journal of Optical Technology. 2023. V. 90. № 4. P. 179–185. https://doi.org/10.1364/JOT. 90.000179
3. Ruzhevich M.S., Semakova A.A., Mynbaev K.D. Optical transitions in long-wavelength light-emitting diode heterostructures based on InAsSb // Journal of Optical Technology. 2023. V. 90. № 7. P. 362. https://doi.org/10.1364/JOT.90.000362
4. Visheratina A.K., Orlova A.O., Purcell-Milton F. Influence of CdSe and CdSe/CdS nanocrystals on the optical activity of chiral organic molecules // J Mater Chem C Mater. 2018. V. 6. № 7. P. 1759–1766. https://doi.org/10.1039/c7tc03457a
5. Cao Z., Shu Y., Qin H. Quantum dots with highly efficient, stable, and multicolor electrochemiluminescence // ACS Cent Sci. 2020. V. 6. № 7. P. 1129–1137. https://doi.org/10.1021/acscentsci.0c00484
6. Ma F., Abboud K.A., Zeng C. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange // Nature Synthesis. 2023. V. 2. № 10. P. 949–959. https://doi.org/10.1038/s44160-023-00330-6
7. Cui C., Li X., Liu J. Synthesis and functions of Ag2S nanostructures // Nanoscale Res Lett. 2015. V. 10. № 1. P. 431. https://doi.org/10.1186/s11671-015-1125-7
8. Chevallier T., Le Blevennec G., Chandezon F. Photoluminescence properties of AgInS2-ZnS nanocrystals: The critical role of the surface // Nanoscale. 2016. V. 8. № 14. P. 7612–7620. https://doi.org/10.1039/c5nr07082a
9. Long Z., Zhang W., Tian J. Recent research on the luminous mechanism, synthetic strategies, and applications of CuInS2 quantum dots // Inorg Chem Front. 2021. V. 8. № 4. P. 880–897. https://doi.org/10.1039/d0qi01228a
10. Nakazawa T., Kim D., Oshima Y. Synthesis and application of AgBiS2 and Ag2S nanoinks for the production of IR photodetectors // ACS Omega. American Chemical Society. 2021. V. 6. № 31. P. 20710–20718. https://doi.org/10.1021/acsomega.1c03463
11. Kurshanov D.A., Gromova Yu.A., Cherevkov S.A. Nontoxic ternary quantum dots AgInS2 and AgInS2/ZnS: Synthesis and optical properties // Opt Spectrosc. 2018.
V. 125. № 6. P. 1041–1046. https://doi.org/10.1134/S0030400X1812010X
12. Yang R., Mei L., Fan Y. ZnIn2S4-based photocatalysts for energy and environmental applications // Small Methods. 2021. V. 5. № 10. P. 2100887. https://doi.org/10.1002/smtd.202100887
13. Morselli G., Villa M., Fermi A. Luminescent copper indium sulfide (CIS) quantum dots for bioimaging applications // Nanoscale Horiz. 2021. V. 6. № 9. P. 676–695. https://doi.org/10.1039/d1nh00260k
14. Wang Y., Kavanagh S.R., Burgués-Ceballos I. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells // Nat Photonics. Nature Research. 2022. V. 16. № 3. P. 235–241. https://doi.org/10.1038/s41566-021-00950-4
15. Righetto M., Wang Y., Elmestekawy K.A. Cation-disorder engineering promotes efficient charge-carrier transport in AgBiS2 nanocrystal films // Advanced Materials. 2023. V. 35. № 48. P. 2305009. https://doi.org/10.1002/adma.202305009
16. Chang J.-Y., Wang G.-Q., Cheng C.-Y. Strategies for photoluminescence enhancement of AgInS2 quantum dots and their application as bioimaging probes // J Mater Chem. 2012. V. 22. № 21. P. 10609. https://doi.org/10.1039/c2jm30679d
17. Li Y., Li Z., Ye W. Gold nanorods and graphene oxide enhanced BSA-AgInS2 quantum dot-based photoelectrochemical sensors for detection of dopamine // Electrochim Acta. 2019. V. 295. P. 1006–1016. https://doi.org/10.1016/j.electacta.2018.11.121
18. Martín-Rodríguez R., Geitenbeek R., Meijerink A. Incorporation and luminescence of Yb3+ in CdSe nanocrystals // J Am Chem Soc. 2013. V. 135. № 37. P. 13668–13671. https://doi.org/10.1021/ja4077414
19. Murugadoss G., Prakash J., Rajesh Kumar M. Controlled synthesis of europium-doped SnS quantum dots for ultra-fast degradation of selective industrial dyes // Catalysts. MDPI. 2022. V. 12. № 10. P. 1128. https://doi.org/10.3390/catal12101128
20. Andresen E., Islam F., Prinz C. Assessing the reproducibility and up-scaling of the synthesis of Er,Ybdoped NaYF4-based upconverting nanoparticles and control of size, morphology, and optical properties // Sci Rep. Nature Research. 2023. V. 13. № 1. P. 2288. https://doi.org/10.1038/s41598-023-28875-8
21. Sakai R., Onishi H., Ido S. Effective Mn-doping in AgInS2/ZnS core/shell nanocrystals for dual photoluminescent peaks // Nanomaterials. MDPI AG. 2019. V. 9. № 2. P. 263. https://doi.org/10.3390/nano9020263
22. Wang S., Zhu Y., Yang X. Photoelectrochemical detection of H2O2 based on flower-like CuInS2-graphene hybrid // Electroanalysis. 2014. V. 26. № 3. P. 573–580. https://doi.org/10.1002/elan.201300515
23. Portniagin A.S., Ning J., Wang S. Monodisperse CuInS2/CdS and CuInZnS2/CdS core–shell nanorods with a strong near-infrared emission // Adv Opt Mater. 2022. V. 10. № 8. P. 2102590. https://doi.org/10.1002/adom.202102590
24. Yu M., Lv X., Mahmoud Idris A. Upconversion nanoparticles coupled with hierarchical ZnIn2S4 nanorods as a
near-infrared responsive photocatalyst for photocatalytic CO2 reduction // J Colloid Interface Sci. 2022. V. 612. P. 782–791. https://doi.org/10.1016/j.jcis. 2021.12.197
25. Han M., Wang Z., Zhang Z. Rationally constructing intercrossed CuInS2 nanosheets on TiO2 nanorods for efficient photoelectrochemical water splitting // Chem Eng Sci. 2023. V. 281. P. 119151. https://doi.org/10.1016/j.ces.2023.119151
26. Baek W., Bootharaju M.S., Walsh K.M. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters // Nat Mater. Nature Research. 2021. V. 20. № 5. P. 650–657. https://doi.org/10.1038/s41563-020-00880-6
27. Deng F., Zhong F., Hu P. Fabrication of In-rich AgInS2 nanoplates and nanotubes by a facile low-temperature co-precipitation strategy and their excellent visible-light photocatalytic mineralization performance // Journal of Nanoparticle Research. 2017. V. 19. № 1. P. 14. https://doi.org/10.1007/s11051-016-3708-3
28. Qin C., Li S., Jiang G. Preparation of flower-like ZnO nanoparticles in a cellulose hydrogel microreactor // Bioresources. 2017. V. 12. № 2. P. 3182–3191. https://doi.org/10.15376/biores.12.2.3182-3191
29. Verma A., Chaudhary P., Singh A. ZnS nanosheets in a polyaniline matrix as metallopolymer nanohybrids for flexible and biofriendly photodetectors // ACS Appl Nano Mater. 2022. V. 5. № 4. P. 4860–4874. https://doi.org/10.1021/acsanm.1c04437
30. Raevskaya A., Lesnyak V., Haubold D. A fine size selection of brightly luminescent water-soluble Ag-In-S and Ag-In-S/ZnS quantum dots // Journal of Physical Chemistry C. 2017. V. 121. № 16. P. 9032–9042. https://doi.org/10.1021/acs.jpcc.7b00849
31. Miropoltsev M., Kuznetsova V., Tkach A. FRET-based analysis of AgInS2/ZnAgInS/ZnS quantum dot recombination dynamics // Nanomaterials. MDPI AG. 2020. V. 10. № 12. P. 1–15. https://doi.org/10.3390/nano10122455
32. Soares J.X., Wegner K.D., Ribeiro D.S.M. Rationally designed synthesis of bright AgInS2/ZnS quantum dots with emission control // Nano Res. Tsinghua University Press. 2020. V. 13. № 9. P. 2438–2450. https://doi.org/10.1007/s12274-020-2876-8
33. Cichy B., Rich R., Olejniczak A. Two blinking mechanisms in highly confined AgInS2 and AgInS2/ZnS quantum dots evaluated by single particle spectroscopy // Nanoscale. 2016. V. 8. № 7. P. 4151–4159. https://doi.org/10.1039/c5nr07992f
34. Komarala V.K., Xie C., Wang Y. Time-resolved photoluminescence properties of CuInS2/ZnS nanocrystals: Influence of intrinsic defects and external impurities // J Appl Phys. 2012. V. 111. № 12. P. 124314. https://doi.org/10.1063/1.4730345