DOI: 10.17586/1023-5086-2024-91-06-30-38
УДК: 621.315.592
Optical properties of InGaP(As) quantum dots in GaAs/AlGaAs/InGaP/InGaAs heterostructures
Full text on elibrary.ru
Андрюшкин В.В., Новиков И.И., Гладышев А.Г., Бабичев А.В., Неведомский В.Н., Папылев Д.С., Колодезный Е.С., Карачинский Л.Я., Егоров А.Ю. Оптические свойства квантовых точек InGaP(As) в гетероструктурах GaAs/AlGaAs/InGaP/InGaAs // Оптический журнал. 2024. Т. 91. № 6. С. 30–38. http://doi.org/ 10.17586/1023-5086-2024-91-06-30-38
Andryushkin V.V., Novikov I.I., Gladyshev A.G., Babichev A.V., Nevedomsky V.N., Papylev D.S., Kolodeznyi E.S., Karachinsky L.Ya., Egorov A.Yu. Optical properties of InGaP(As) quantum dots in GaAs/AlGaAs/InGaP/InGaAs heterostructures // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 30–38. http://doi.org/ 10.17586/1023-5086-2024-91-06-30-38
Subject of study. InGaP(As) quantum dots in GaAs/AlGaAs/InGaP/InGaAs heterostructures.
Aim of study. Establishing a dependency of the InGaP(As) semiconductor quantum dots maximum
photoluminescence spectrum wavelength on the location of InGaAs quantum wells in GaAs/AlGaAs/
InGaP/InGaAs heterostructures. Method. InGaP(As) quantum dots were obtained using molecular
beam epitaxy technology by replacing phosphorus with arsenic in a thin InGaP layer during epitaxial
growth. The optical properties of InGaP(As) quantum dots were studied by photoluminescence
spectroscopy. Main results. It is shown that the use of the InGaAs quantum well as the formation
surface of the transformed into quantum dots InGaP layer does not affect the wavelength of the
maximum photoluminescence spectrum of the quantum dots. At the same time a long-wave shift of
the photoluminescence spectrum of quantum dots by 56 nm is observed when the quantum dots are
overgrown with 5-nm thick InGaAs quantum well with the molar fraction of InAs 0.17. The surface
density of quantum dots was 1.3х1012 cm–2. Practical significance. The results obtained in the study
of the optical properties of InGaP(As) quantum dots will serve as the basis for the development of the
active region for near-infrared sources.
quantum dots, heterostructures, molecular-beam epitaxy, semiconductors
Acknowledgements:this work was supported by the Ministry of Science and Higher Education of the Russian Federation, research project № 2019-1442 (project reference number FSER-2020-0013).
OCIS codes: 130.5990, 160.6000, 250.5590
References:1. Ledentsov N.N., Ustinov V.M., Egorov A.Y. et al. Optical properties of heterostructures with InGaAs–GaAs quantum clusters // Semiconductors. 1994. V. 28. № 8. P. 832–834.
2. Zhukov A.E., Egorov A.Y., Kovsh A.R. et al. Injection heterolaser based on an array of vertically aligned InGaAs quantum dots in a AlGaAs matrix // Semiconductors. 1997. V. 31. P. 411–414. https://doi.org/10.1134/1.1187173
3. Maleev N.A., Zhukov A.E., Kovsh A.R. et al. Stacked InAs/InGaAs quantum dot heterostructures for optical sources emitting in the 1.3 μm wavelength range // Semiconductors. 2000. V. 34. № 5. P. 594–597. https://doi.org/10.1134/1.1188034 4. Tsyrlin G.E., Petrov V.N., Masalov S.A. et al. Self-organization of quantum dots in multilayer InAs/GaAs and InGaAs/GaAs structures in submonolayer epitaxy // Semiconductors. 1999. V. 33. P. 677–680. https://doi.org/10.1134/1.1187755
5. Karachinsky L.Y., Kettler T., Gordeev N.Y. et al. High-power singlemode CW operation of 1.5 μm-range quantum dot GaAs-based laser // Electron. Lett. 2005. V. 41. № 8. P. 478–480. https://doi.org/10.1049/el:20050536
6. Ledentsov N.N., Shchukin V.A., Kettler T. et al. MBEgrown metamorphic lasers for applications at telecom wavelengths // J. Cryst. Growth. 2007. V. 301. P. 914–922. https://doi.org/10.1016/j.jcrysgro.2006.09.035
7. Haglund E.P., Kumari S., Haglund E. Silicon-integrated hybrid-cavity 850-nm VCSELs by adhesive bonding: Impact of bonding interface thickness on laser performance // IEEE J. Sel. Top. Quantum Electron. 2017. V. 23. № 6. P.1700109. https://doi.org/10.1109/JSTQE.2016.2633823
8. Kakuma S., Noda K. Practical and sensitive measurement of methane gas concentration using a 1.6 μm vertical-cavity-surface-emitting-laser diode // Sens. Mater. 2010. V. 22. № 7. P. 365–375.
9. Rablau C. LIDAR — A new (self-driving) vehicle for introducing optics to broader engineering and non-engineering audiences // Fifteenth Conference on Education and Training in Optics and Photonics: ETOP 2019. Quebec, Canada. May 21–24, 2019. P.111430C-1–111430C–14. https://doi.org/10.1117/12.2523863
10. Schimpf C., Reindl M., Huber D. et al. Quantum cryptography with highly entangled photons from semiconductor quantum dots // Sci. adv. 2021. V. 7. № 16. P. eabe8905. https://doi.org/10.1126/sciadv.abe890
11. Bozzio M., Vyvlecka M., Cosacchi M. et al. Enhancing quantum cryptography with quantum dot single-photon sources // npj Quantum Inf. 2022. V. 8. № 1. P. 104. https://doi.org/10.1038/s41534-022-00626-z
12. Michler P. Single semiconductor quantum dots. Heidelberg: Springer-Verlag, 2009. 389 p. https://doi.org/10.1007/978-3-540-87446-1
13. Schlottmann E., Schicke D., Kruger F. et al. Stochastic polarization switching induced by optical injection in bimodal quantum-dot micropillar lasers // Opt. Express. 2019. V. 27. № 20. P. 28816–28831. https://doi.org/10.1364/oe.27.028816
14. Tang X., Yin Z., Zhao J. et al. A new method of two-step growth of InAs/GaAs quantum dots with higher density and more size uniformity // Nanotechnol. 2005. V. 17. № 1. P. 295–299. https://doi.org/10.1088/0957-4484/17/1/050
15. Kim J.S., Kawabe M., Koguchi N. Ordering of highquality InAs quantum dots on defect-free nanoholes // Appl. Phys. Lett. 2006. V. 88. № 7. P. 072107-1–072107-3. https://doi.org/10.1063/1.2174097
16. Colombo D., Sanguinetti S., Grilli E. et al. Efficient room temperature carrier trapping in quantum dots by tailoring the wetting layer // J. Appl. Phys. 2003. V. 94. № 10. P. 6513–6517. https://doi.org/10.1063/1.1622775
17. Kryzhanovskaya N.V., Gladyschev A.G., Blokhin S.A. et al. Optical and structural properties of InAs quantum dot arrays grown in an InxGa1–xAs matrix on a GaAs substrate // Semiconductors. 2004. V. 38. P. 833–836. https://doi.org/10.1134/1.1777610
18. Gladyshev A.G., Babichev A.V., Andryushkin V.V. et al. Studying the optical and structural properties of three-dimensional InGaP (As) islands formed by substitution of elements of the fifth group // Technical Physics. 2020. V. 65. P. 2047–2050. https://doi.org/10.1134/S1063784220120099
19. Kryzhanovskaya N.V., Dragunova A.S., Komarov S.D. et al. Optical properties of three-dimensional InGaP (As) islands formed by substitution of fifth-group elements // Optics and Spectroscopy. 2021. V. 129. P. 256–260. https://doi.org/10.1134/S0030400X21020089
20. Mantri M.R., Panda D., Gazi S.A. et al. Impact of growth rate variabilities of quantum dots and capping layer on photoluminescence of epitaxially grown InAs quantum dots // Proc. SPIE 11291. Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII. 2020. V. 11291. P. 8–14. https://doi.org/10.1117/12.2 547134
21. Yuan Q., Liang B., Zhou C. et al. Interplay effect of temperature and excitation intensity on the photoluminescence characteristics of InGaAs/GaAs surface quantum dots // Nanoscale Res. Lett. 2018. V. 13. P. 1–9. https://doi.org/10.1186/s11671-018-2792-y
22. Mirin R.P., Ibbetson J.P., Nishi K. et al. 1.3 μm photoluminescence from InGaAs quantum dots on GaAs // Appl. Phys. Lett. 1995. V. 67. № 25. P. 3795–3797. https://doi.org/10.1063/1.115386
23. Liu X., Liu J., Liang B. et al. Type-II characteristics of photoluminescence from InGaAs/GaAs surface quantum dots due to Fermi level pinning effect //Appl. Surf. Sci. 2022. V. 578. P. 152066. https://doi.org/10.1016/j.apsusc.2021.152066