ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-06-39-46

УДК: 53.043

The density of electronic states in silicon nanocrystals in a SiO2 matrix and with a hydrogen passivated surface

For Russian citation (Opticheskii Zhurnal):

Герт А.В., Белолипецкий А.В., Авдеев И.Д. Плотность электронных состояний в нанокристаллах кремния в матрице SiO2 и с пассивированной водородом поверхностью // Оптический журнал. 2024. Т. 91. № 6. С. 39–46. http://doi.org/ 10.17586/1023-5086-2024-91-06-39-46

 

Gert A.V., Belolipetsky A.V., Avdeev I.D The density of electronic states in silicon nanocrystals in a SiO2 matrix and with a hydrogen passivated surface // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 39–46. http://doi.org/ 10.17586/1023-5086-2024-91-06-39-46

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. The work dedicates to optical transitions and absorption cross-section calculation in the silicon nanocrystals in a SiO2 dielectric matrix and nanocrystals passivated with hydrogen. Purpose of study. Calculate the probability of optical transitions and the density of electronic states in silicon nanocrystals with different environments, adapt the tight-binding method for correct passivation of dangling silicon bonds. Method. The work uses a variant of the tight binding method taking into account a large number of s, p, d and s* orbitals. Main results. The local density of states of electrons and holes, the probabilities of optical transitions, and the absorption cross section in silicon nanocrystals passivated with hydrogen and nanocrystals placed in a SiO2 matrix are calculated. It has been shown that electronic and hole states in passivated silicon nanocrystals are localized inside the crystal; optical transitions occur with a wavelength in the range of 440–620 nm. Surrounding the SiO2 matrix leads to an increase of the probability of optical transitions and the appearance of density of states outside the nanocrystal; radiation in this case occurs in the wavelength range 410–620 nm. Practical significance. Prospects for the use of silicon nanocrystals in photonics and photovoltaics, development of technology for creating silicon nanocrystals with specified optical properties.

Keywords:

silicon nanocrystals, tight-binding method, surface passivation

Acknowledgements:

the authors express gratitude to M.O. Nestoklon for his contribution to the development of the method used in the work. I.D. Avdeev expresses gratitude to the Foundation for the Developmentof Theoretical Physics and Mathematics "BASIS" for the support provided.

OCIS codes: 250.5590 160.4236

References:

1. Priolo F., Gregorkiewicz T., Galli M., Krauss T.F. Silicon nanostructures for photonics and photovoltaics // Nature Nanotechnol. 2014. V. 9. № 1. P. 19–32. https://doi.org/10.1038/nnano.2013.271

2. Boyraz O., Jalali B. Demonstration of a silicon Raman laser // Opt. Express. 2004. V. 12. № 21. P. 5269. https://doi.org/10.1364/OPEX.12.005269
3. Slater J.C., Koster G.F. Simplified LCAO method for the periodic potential problem // Phys. Rev. 1954. V. 94. № 6. P. 1498. https://doi.org/ 10.1103/PhysRev. 94.1498
4. Löwdin P.-O. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals // J. Chem. Phys. 1950. V. 18. № 3. P. 365–375. https://doi.org/ 10.1063/ 1.1747632
5. Pathak S., Rakib T., Hou R., Nevidomskyy A., Ertekin E., Johnson H.T., Wagner L.K. Accurate tight-binding model for twisted bilayer graphene describes topological flat bands without geometric relaxation // Phys. Rev. B. 2022. V. 105. P. 115141
6. Vogl P., Hjalmarson H.P., Dow J.D. A semi-empirical tight-binding theory of the electronic structure of semiconductors // J. Phys. Chem. Sol. 1983. V. 44. № 365. https://doi.org/ 10.1016/0022-3697(83)90064-1
7. Gert A.V., Nestoklon M.O., Prokofiev A.A., Yassievich I.N. Light emission of silicon nanocrystals (a review) // Semiconductors. 2017. V. 51. № 10. P. 1274–1289. https://doi.org/ 10.21883/FTP.2017.10.45009. 8605
8. Chadi D.J., Cohen M.L. Tight-binding calculations of the valence bands of diamond and zincblende crystals // Physica status solidi (b). 1975. V. 68 P. 405. https://doi.org/ 10.1002/pssb.2220680140
9. Jancu J.-M., Scholz R., Beltram F., Bassani F. Empirical spds* tight-binding calculation for cubic semiconductors: General method and material parameters // Phys. Rev. B. 1998. V. 57. № 11. P. 6493. https://doi.org/ 10.1103/PhysRevB.57.6493
10. Delerue C., Lanoo M. Nanostructures. Theory and modelling. Berlin: Springer, 2004. 245 p.
11. Gusev O.B., Poddubny A.N., Prokofiev A.A., Yassievich I.N. Light emission of silicon nanocrystals (a review) // Semiconductors. 2013. V. 47. P. 147–167.
12. Nestoklon M.O., Avdeev I.D., Belolipetskiy A.V., Sychugov I., Pevere F., Linnros J., Yassievich I.N. Tight-binding calculations of the optical properties of Si nanocrystals in a SiO2 matrix // Faraday Discuss. 2020. V. 222. P. 258–273. https://doi.org/ 10.1039/ C9FD00090A
13. Belolipetskiy A.V., Nestoklon M.O., Yassievich I.N., Simulation of electron and hole states in Si nanocrystals in a SiO2 matrix: Choice of parameters of the empirical tight-binding method // Semiconductors. 2018. V. 52. P. 1264.
14. Seino K., Bechstedt F., Kroll P. Band alignment at a nonplanar Si/SiO2 interface // Phys. Rev. B. 2010. V. 82. P. 085320. https://doi.org/10.1103/PhysRevB. 82.085320
15. Poddubny A.N., Dohnalová K. Direct band gap silicon quantum dots achieved via electronegative capping // Phys. Rev. B. 2014. V. 90. P. 245439. https://doi.org/10.1103/PhysRevB.90.245439
16. Avdeev I.D., Belolipetsky A.V., Ha N.N., Nestoklon M.O., Yassievich I.N. Absorption of Si, Ge, and SiGe alloy nanocrystals embedded in SiO2 matrix // Journal of Applied Physics. 2020. V. 127. P. 114301. https://doi.org/10.1063/1.5139960