ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-06-67-77

УДК: 535.326: 539.120.61: 539.184.2

Controlling the frequencies of photons emitted by a single quantum dot in a one-dimensional photonic crystal

For Russian citation (Opticheskii Zhurnal):

Гарифуллин А.И., Гайнутдинов Р.Х., Хамадеев М.А. Управление частотами фотонов, излучаемых одиночной квантовой точкой в одномерном фотонном кристалле // Оптический журнал. 2024. Т. 91. № 6. С. 67–77. http://doi.org/10.17586/1023-5086-2024-91-06-67-77

 

Garifullin A.I., Gainutdinov R.Kh., Khamadeev M.A. Controlling the frequencies of photons emitted by a single quantum dot in a one-dimensional photonic crystal [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 67–77. http://doi.org/10.17586/1023-5086-2024-91-06-67-77

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. A single quantum dot from InAs in a one-dimensional photonic crystal based on GaAs. Aim of study. Development of a method for controlling the frequencies of photons emitted by a single quantum dot in a one-dimensional photonic crystal based on the effect of changes in the electromagnetic mass of an electron in the photonic crystal medium. Method. The proposed method is based on the effect of changing the electromagnetic mass of an electron in the photonic crystal medium. It manifests itself in the form of corrections to the energy levels of electrons, depending on the optical density of the medium. To control the latter, we propose to use the injection of free charge carriers and the quadratic electro-optic Kerr effect. Main results. Using the example of quantum transitions between the p- and s-states of a hydrogen-like quantum dot from InAs placed in the airvoids of a one-dimensional photonic crystal from GaAs, the fundamental possibility of controlling in situ the frequencies of photons emitted by a quantum dot was shown. This is possible based on the effect of changing the electromagnetic mass of an electron, as well as adjusting the refractive index of a photonic crystal by injection of free charge carriers and the electro-optic Kerr effect. The calculations carried out for the conditions described above showed that the range of photon energy control available in the experiment is small (several tens of microelectronvolts) to use in practice, and the displacement effect is inferior in order of magnitude to that already observed in the experiment. At the same time, we draw attention to the fact that the magnitude of the displacement of energy levels under the influence of the quantum electrodynamic effect under study depends quadratically on the refractive index of the material from which the photonic crystal is made. Therefore, we expect that the method described here will be significantly scaled as the optical density of the substance increases. Such photonic crystals can be obtained using metamaterials with a high refractive index. Practical significance. The results obtained in the work of developing a method for controlling the frequencies of photons emitted by a single quantum dot in a one-dimensional photonic crystal will serve as the basis for the implementation of the photon-emitter interface, which contains key quantum functionality such as photonic qubits, single-photon light sources, as well as nonlinear quantum photon-photon gates.

Keywords:

photonic crystals, quantum dots, electromagnetic mass of an electron, quantum electrodynamics, electro-optical Kerr effect

Acknowledgements:

the work was funded by the strategic academic leadership program "Priority 2030" of Kazan Federal University under the Government of the Russian Federation

OCIS codes: 230.5298, 230.5590, 020.5580, 190.3270

References:

1. Krasheninnikov A.V., Openov L.A. Elementary quantumdot gates for single-electron computing // JETP Lett. 1996. V. 64. P. 231–236. https://doi.org/10.1134/1.567180

2. O'Brien J.L., Furusawa A., Vučković J. Photonic quantum technologies // Nature Photon. 2009. V. 3. № 12. P. 687–695. https://doi.org/10.1038/nphoton.2009.229
3. Heindel T., Kim J.H., Gregersen N. et al. Quantum dots for photonic quantum information technology // Adv. Opt. Photonics. 2023. V. 15. № 3. P. 613–738. https://doi.org/10.1364/AOP.490091
4. Rakhlin M.V., Belyaev K.G., Sorokin S.V. et al. Single-photon emitter at 80 k based on a dielectric nanoantenna with a CdSe/ZnSe quantum dot // JETP Lett. 2018. V. 108. P. 201–204. https://doi.org/10.1134/S0021364018150109
5. Senellart P., Solomon G., White A. High-performance semiconductor quantum-dot single-photon sources // Nature Nanotech. 2017. V. 12. № 11. P. 1026–1039. https://doi.org/10.1038/nnano.2017.218
6. Lee C.M., Buyukkaya M.A., Aghaeimeibodi S. et al. A fiber-integrated nanobeam single photon source emitting at telecom wavelengths // Appl. Phys. Lett. 2019. V. 114. № 17. P. 171101(1–5). https://doi.org/10.1063/1.5089907
7. Uppu R., Midolo L., Zhou X. et al. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology // Nature Nanotech. 2021. V. 16. № 12. P. 1308–1317. https://doi.org/10.1038/s41565-021-00965-6
8. Gainutdinov R.Kh., Nabieva L.Y., Garifullin A.I. et al. Strong interaction effects in the emission spectra of a quantum dot coupled to a phonon reservoir // JETP Lett. 2021. V. 114. P. 188–194. https://doi.org/10.1134/S0021364021160050
9. Livache C., Martinez B., Goubet N. et al. A colloidal quantum dot infrared photodetector and its use for intraband detection // Nat. Commun. 2019. V. 10. № 1. P. 2125(1–10). https://doi.org/10.1038/s41467-019-10170-8
10. Eremchev I.Y., Eremchev M.Y., Naumov A.V. Multifunctional far-field luminescence nanoscope for studying single molecules and quantum dots: (50th anniversary of the Institute of Spectroscopy, Russian Academy of Sciences) // Phys.-Uspekhi. 2018. V. 62. № 3. P. 294–303. https://doi.org/10.3367/UFNe.2018.06.038461
11. Hosokawa H., Tamaki R., Sawada T. et al. Solution-processed intermediate-band solar cells with lead sulfide quantum dots and lead halide perovskites // Nature communications // Nat. Commun. 2019. V. 10. № 1. P. 43(1–8). https://doi.org/10.1038/s41467-018-07655-3
12. Visheratina A.K., Martynenko I.V., Orlova A.O. et al. Investigation of biocompatible complexes of Mn2+-doped ZnS quantum dots with chlorin e6 // Journal of Optical Technology. 2014. V. 81. № 8. P. 444–448. https://doi.org/10.1364/JOT.81.000444
13. Faraon A., Majumdar A., Englund D. et al. Integrated quantum optical networks based on quantum dots and photonic crystals // New J. Phys. 2011. V. 13. № 5. P. 055025(1–13). https://doi.org/10.1088/1367-2630/13/5/055025
14. Yu Y., Xue W., Semenova E. et al. Demonstration of a self-pulsing photonic crystal Fano laser // Nat. Photonics. 2017. V. 11. № 2. P. 81–84. https://doi.org/10.1038/nphoton.2016.248
15. Chuprina I.N., Kalachev A.A. Generating frequency-bin qubits via spontaneous four-wave mixing in a photonic molecule // Phys. Rev. A. 2019. V. 100. № 4. P. 043843(1–7). https://doi.org/10.1103/PhysRevA.100.043843
16. Lermer M., Gregersen N., Dunzer F. et al. Bloch-wave engineering of quantum dot micropillars for cavity quantum electrodynamics experiments // Phys. Rev. Lett. 2012. V. 108. № 5. P. 057402(1–4). https://doi.org/10.1103/PhysRevLett.108.057402
17. Wei Y., Zhao T., Yao B. et al. Bright and highly-polarized single-photon sources in visible based on droplet-epitaxial GaAs quantum dots in photonic crystal cavities // Opt. Mater. Express. 2020. V. 10. № 1. P. 170–177. https://doi.org/10.1364/OME.379424
18. Gainutdinov R.Kh., Khamadeev M.A., Salakhov M.Kh. Electron rest mass and energy levels of atoms in the photonic crystal medium // Phys. Rev. A. 2012. V. 85. № 5. P. 053836(1–7). https://doi.org/10.1103/PhysRevA. 85.053836
19. Mondia J.P., Tan H.W., Linden S. et al. Ultrafast tuning of two-dimensional planar photonic-crystal waveguides via free-carrier injection and the optical Kerr effect // JOSA B. 2005. V. 22. № 11. P. 2480–2486. https://doi.org/10.1364/JOSAB.22.002480
20. John S., Wang J. Quantum optics of localized light in a photonic band gap // Phys. Rev. B. 1991. V. 43. № 16. P. 12772–12789. https://doi.org/10.1103/PhysRevB.43.12772
21. Wang X.H., Kivshar Y.S., Gu B.Y. Giant lamb shift in photonic crystals // Phys. Rev. Lett. 2004. V. 93. № 7. P. 073901(1–4). https://doi.org/10.1103/PhysRevLett. 93.073901
22. Gainutdinov R.Kh., Garifullin A.I., Khamadeev M.A. et al. Quantum electrodynamics in photonic crystals and controllability of ionization energy of atoms // Phys. Lett. A. 2021. V. 404. P. 127407(1–7). https://doi.org/10.1016/j.physleta.2021.127407
23. Lee S. Colloidal superlattices for unnaturally high-index metamaterials at broadband optical frequencies // Opt. Express. 2015. V. 23. P. 28170(1–12). https://doi.org/10.1364/OE.23.028170
24. Kim R., Chung K., Kim J.Y. et al. Metal nanoparticle array as a tunable refractive index material over broad visible and infrared wavelengths // ACS Photonics. 2018. V. 5. P. 1188–1195. https://doi.org/10.1021/acsphotonics.7b01497
25. Cohen-Tannoudji C., Dupont-Roc J., Grynberg G. Atom-photon interactions, basic processes and applications. Weinheim: WILEY Interscience, 2004. 656 p.
26. Schweber S.S. An introduction to relativistic quantum field theory. New York: Courier, 2011. 905 p.
27. Skorobogatiy M., Yang J. Fundamentals of photonic crystal guiding. New York: Cambridge University Press, 2009. 267 p.
28. Richter M., Carmele A., Sitek A. et al. Few-photon model of the optical emission of semiconductor quantum dots // Phys. Rev. Lett. 2009. V. 103. № 8. P. 087407(1–4). https://doi.org/10.1103/PhysRevLett.103.087407
29. Diakite Y.I., Malozovsky Y., Bamba C.O. et al. First principle calculation of accurate electronic and related properties of zinc blende Indium Arsenide (zb-InAs) // Materials. 2022. V. 15. № 10. P. 3690(1–14). https:// doi.org/10.3390/ma15103690
30. Flugge S. Practical quantum qechanics. New York: Springer, 2011. 636 p.
31. Hu X., Zhang Q., Liu Y. et al. Ultrafast three-dimensional tunable photonic crystal // Appl. Phys. Lett. 2003. V. 83. № 13. P. 2518–2520. https://doi.org/10.1063/1.1615309
32. Hartsuiker A., Harding P.J., Nowicki-Bringuier Y.R. et al. Kerr and free carrier ultrafast all-optical switching of GaAs/AlAs nanostructures near the three photon edge of GaAs // J. Appl. Phys. 2008. V. 104. № 8. P. 083105. https://doi.org/10.1063/1.3000098

33. Morita K., Takahashi T., Kanbara T. et al. Large optical Kerr signal of GaAs/AlAs multilayer cavity with InAs quantum dots embedded in strain-relaxed barriers // Physica E: Low-dimensional systems and nanostructures. 2010. V. 42. № 10. P. 2505–2508. https://doi.org/10.1016/j.physe.2009.12.035
34. Rivoire K., Buckley S., Majumdar A. et al. Fast quantum dot single photon source triggered at telecommunications wavelength // Appl. Phys. Lett. 2011. V. 98. № 8. P. 083105. https://doi.org/10.1063/1.3556644
35. Ramsay A. A review of the coherent optical control of the exciton and spin states of semiconductor quantum dots // Semicond. Sci. Technol. 2010. V. 25. № 10. P. 103001(1–23). https://doi.org/10.1088/0268-1242/ 25/10/103001
36. Aspnes D., Kelso S., Logan R. et al. Optical properties of AlxGa1–xAs // J. Appl. Phys. 1986. V. 60. № 2. P. 754–767. https://doi.org/10.1063/1.337426
37. Skauli T., Kuo P.S., Vodopyanov K.L. et al. Improved dispersion relations for GaAs and applications to nonlinear optics // J. Appl. Phys. 2003. V. 94. P. 6447–6455. https://doi.org/10.1063/1.1621740
38. Kim H., Shen T.C., Sridharan D. et al. Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity // Appl. Phys. Lett. 2011. V. 98. № 9. P. 091102(1–3). https://doi.org/10.1063/1.3562344
39. Aghaeimeibodi S., Lee C.M., Buyukkaya M.A. et al. Large stark tuning of InAs/InP quantum dots // Appl. Phys. Lett. 2019. V. 114. № 7. P. 071105(1–4). https://doi.org/10.1063/1.5082560
40. Katsumi R., Ota Y., Osada A. et al. In situ wavelength tuning of quantum-dot single-photon sources integrated on a CMOS-processed silicon waveguide // Appl. Phys. Lett. 2020. V. 116. № 4. P. 041103(1–5). https://doi.org/10.1063/1.5129325