DOI: 10.17586/1023-5086-2024-91-06-78-86
УДК: 535.93
Integrated optical waveguides for quantum photon gates at a wavelength of 810 nm
Full text on elibrary.ru
Петров В.М., Парфенов М.В., Тронев А.В., Решетников Д.Д., Ильичев И.В. Интегрально-оптические волноводы для квантовых фотонных гейтов на длине волны 810 нм // Оптический журнал. 2024. Т. 91. № 6. С. 78–86. http://doi.org/10.17586/1023-5086-2024-91-06-78-86
Petrov V.M., Parfenov M.V., Tronev A.V., Reshetnikov D.D., Il’ichev I.V. Integrated optical waveguides for quantum photon gates at a wavelength of 810 nm [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 6. P. 78–86. http://doi.org/10.17586/1023-5086-2024-91-06-78-86
Subject of the study. The article investigated optical losses for waveguides designed to create quantum photon gates at a wavelength of 810 nm. Aim of study. Creation of integrated optical single-mode waveguides for quantum photon gates at a wavelength of 810 nm; estimation of optical losses acceptable to maintain the necessary degree of entanglement of a pair of photons. Method. The waveguides were manufactured by thermal diffusion of titanium ions into a substrate, which is an X-slice of nominally pure lithium niobate LiNbO3. The optical loss is estimated by experimentally measuring the loss level per unit waveguide length. Optical radiation was coupled into and out of the waveguide using fiber segments, one end of which was with a connector, and the other ended with a simple cleaving. A drop of immersion liquid was added between the fiber cleavage and the end of the waveguide. Measurements were carried out for both polarizations. Main results. Six groups of samples were produced. In each group there were samples with strip widths d = 3,0, 2,0 and 1,5 microns. The results of measuring optical losses in manufactured waveguides are presented. It was found out that waveguides made with the width of the titanium strip used d ≈ 3 microns have minimal losses. According to our estimates, the minimum losses were approximately 0,20–0,25 dB/cm for transverse magnetic polarization, and 0,1 dB/cm for transverse electric polarization. Practical significance. Manufactured waveguides with a strip width of d ≈ 3 microns can potentially be used to create quantum photonic gates in an integrated optical design. The chosen wavelength of 810 nm will allow us to start developing photonic gates based on the proposed waveguides
in the near future, since one of the most accessible ways to create pairs of entangled photons, from the experimental point of view, is to use a laser at a wavelength of 405 nm, followed by doubling the wavelength using a nonlinear beta barium borate crystal.
integrated optical waveguides, quantum gates, quantum entanglement in lossy waveguides, quantum communications
Acknowledgements:OCIS codes: 250.4725; 270.5585; 230.3750; 230.3120
References:1. Petrov V.M., Agruzov P.M., Lebedev V.V., Il'ichev I.V., Shamray A.V. Broadband integrated optical modulators:
achievements and prospects // Phys.-Usp. 2021. V. 64. Iss. 7. P. 722. https://doi.org/10.3367/UFNe.2020.11.038871
2. Skryabin N.N., Kondratyev I.V., Dyakonov I.V., Borzenkova O.V., Kulik S.P. Straupe S.S. Two-qubit quantum photonic processor manufactured by femtosecond laser writing // Appl. Phys. Letters. 2023. V. 122. P. 121102. https://doi.org/10.1063/5.0137728
3. Petrov V.M., Shamrai A.V., Il’ichev I.V., Agruzov P.M., Lebedev V.V., Gerasimenko N.D., Gerasimenko V.S. National microwave integrateed optical modulators for quantum communications // Photonics Russia. 2020. V. 14 Iss. 5. P. 414–423.
https://doi.org/10.22184/1993-7296.FRos.2020.14.
5.414.4234. Petrov V.M., Shamray A.V., Ilyichev I.V., Gerasimenko N.D., Gerasimenko V.S., Agruzov P.M., Lebedev V.V. Generation of optical frequency harmonics for quantum communication systems at side frequencies // Photonics Russia. 2020. V. 14. Iss. 7. P. 570–582. https://doi.org/10.22184/1993-7296.FRos.2020.14.7.570.582
5. Vashukevich E.A., Lebedev V.V., Ilichev I.V., Agruzov P.M., Shamrai A.V., Petrov V.M., Golubeva T.Yu. Broadband chip-based source of quantum noise with electrically controllable beam splitter // Phys. Rev. Applied. 2022. V. 17. № 6. P. 064039. https://doi.org/ 10.1103/PhysRevApplied.17.064039
6. Gerasimenko N.D., Gerasimenko V.S., Petrov V.M. Generation of frequency harmonics for QKD systems at subcarrier waves // Journal of Physics: Conference Series. 2021. V. 1984. № 1. P. 012010. https://doi.org/10.1088/1742-6596/1984/1/012010
7. Gleim A.V., Chistyakov V.V., Bannik O.I. et all. Sideband quantum communication at 1 Mbit/s on a metropolitan area network // Journal of Optical Technology. 2017. V. 84. P. 362–367. https://doi.org/10.1364/JOT.84.000362
8. Zhang M., Wang C., Kharel P., Zhu D., Lončar M. Integrated lithium niobate electro-optic modulators: when performance meets scalability // Optica. 2021. V. 8. Iss. 5. P. 652–667. https://doi.org/10.1364/OPTICA.415762
9. Skryabin N., Bukharin M., Kostritskii S.M., Korkishko Yu., Fedorov V., Khudyakov D. Technology of three-dimensional femtosecond writing for creating integrated optics elements // Radio Industry. 2018. P. 110–117. https://doi.org/10.21778/2413-9599-2018-1-110-117
10. Aguayo-Alvarado A.L., Acevedo-Carrera A., Domínguez-Serna F.A., De La Cruz W., Garay-Palmett K. A proposal for nonlinear — optics based quantum gates in integrated photonic circuits. Frontiers in Optics // Laser Science. OSA Technical Digest. 2020. Paper FM4A.8. https://doi.org/10.1364/FIO.2020.FM4A.8
11. Mandal M., Mukhopadhyay S. Photonic scheme for implementing quantum square root controlled z gate using phase and intensity encoding of light // IET Optoelectron. 2021. V. 15. Iss. 1. P. 52–60. https://doi.org/10.1049/ote2.12008
12. Petrov V.M., Koroteev D.A., Semisalov D.A., Strashilin V.S., Khlusevich D.S., Yakovlev M.I., Parfenov M.V. Integrated optical C-NOT gates: Estimation of the main parameters for practical design // Photonics Russia. 2023. V. 17. Iss. 1. P. 58–71. https://doi.org/10.22184/1993-7296.FRos.2023.17.1.58.70
13. Lebedev V.V., Il’ichev I.V., Agruzov P.M., Tronev A.V., Shamray A.V. Optical modulator // RF Patent No. 187990 U1. 2019.
14. Rai A., Das S., Agrawal G.S. Quantum entanglement in coupled lossy waveguides // Optics Express. 2010. V. 18. № 6. P. 6241–6254. https://doi.org/10.1364/ OE.18.006241
15. Chuang I.L., Laflamme R., Paz J.-P. Effects of loss and decoherence on a simple quantum computer // arXiv:quant-ph/9602018v1
16. Yang S., Liu W., Han Y., Yang B. Effects of loss and dispersion on fiber-based quantum key distribution system // Proc. SPIE 7136. Optical Transmission, Switching, and Subsystems VI. 11 November 2008. P. 71360B. https://doi.org/10.1117/12.804060