DOI: 10.17586/1023-5086-2024-91-07-13-24
УДК: 621.373:535
Changes in the spectrum and structure of polariton modes of a class C laser under the action of distributed feedback of waves
Full text on elibrary.ru
Кочаровский Вл.В., Мишин А.В., Кочаровская Е.Р. Изменения спектра и структуры поляритонных мод лазера класса C под действием распределенной обратной связи волн // Оптический журнал. 2024. Т. 91. № 7. С. 13–24. http://doi.org/10.17586/1023-5086-2024-91-07-13-24
Kocharovsky Vl.V., Mishin A.V., Kocharovskaya E.R. Changes in the spectrum and structure of polariton modes of a class C laser under the action of distributed feedback of waves [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 13–24. http://doi.org/10.17586/1023-5086-2024-91-07-13-24
Subject of study. Characteristic and dispersion equations of modes of a class C laser as well as a spectrum of these modes. Aim of study. Determine how the field structure, frequencies and wavenumbers of modes depend on laser parameters. Method. Numerical modeling of the characteristic and dispersion equations of a class C laser, analytical estimates in a number of special cases. Main results. The structure, frequencies and growth/decay rates of polariton modes are analyzed depending on the distributed-feedback coefficient of counterpropagating waves and the level of population inversion created by pumping for typical parameters of a superradiant laser with an open combined Fabry–Perot cavity with the distributed-feedback coefficient of counterpropagating waves, in which the photon lifetimes are less than or on the order of the phase relaxation time of optical dipole oscillations of active centers. It is shown that changing the value of the distributed feedback of counterpropagating waves makes it possible to effectively control the spectrum of polariton modes of the laser, in particular, to achieve lasing at frequencies inside the photonic bandgap defined by it, from which electromagnetic modes are displaced. Practical significance. The results obtained in this work show how a change in a number of laser parameters affects the spectrum of modes, which is required to control laser generation.
polariton modes, low-Q combined cavity, superradiant laser, distributed feedback, mode spectrum, photonic bandgap
Acknowledgements:the work was carried out with financial support from the Ministry of Education and Science of the Russian Federation within the framework of the state assignment of the Institute of Applied Physics of the RAS № FFUF-2023-0002.
OCIS codes: 140.3430, 140.6630, 030.1670
References:1. Wu J., Ghosh S., Su R., et. al. Nonlinear parametric scattering of exciton polaritons in perovskite microcavities // Nano Lett. 2021. V. 21. № 7. P. 3120–3126. https://doi.org/10.1021/acs.nanolett.1c00283
2. Engelhardt G., Cao J. Monolithic generators of pseudo-nondiffracting optical vortex beams at the microscale // Phys. Rev. B. 2022. V. 105. № 6. P. 064205. https://doi.org/10.1103/PhysRevB.105.064205
3. Schneider C., Rahimi-Iman A., Kim N., et al. An electrically pumped polariton laser // Nature. 2013. V. 497. P. 348–352. https://doi.org/10.1038/nature12036
4. Zhang L., Hu J., Wu J., et.al. Recent developments on polariton lasers // Progress in Quantum Electronics. 2022. V. 83. P. 100399. https://doi.org/10.1016/j.pquantelec.2022.100399
5. Котова Л.В., Savvidis P.G., Besombes L. и др. Поляритонные моды в цилиндрическом микрорезонаторе в режим поляритонного лазера // ФТТ. 2021. Т. 63. № 5. С. 610–615. https://doi.org/10.21883/FTT.2021.05.50809.001
Kotova L.V., Savvidis P.G., Besombes L., et al. polariton modes in a cylindrical microcavity in the polariton lasing regime // Phys. Solid State. 2021. V. 63. № 5. P. 722–727. https://doi.org/10.1134/S1063783421050103
6. Scheibner M., Schmidt T., Worschech L., et al. Superradiance of quantum dots // Nature Phys. 2007. V. 3. P. 106–110. https://doi.org/10.1038/nphys494
7. Jho Y.D., Wang X., Reitze D.H., et al. Cooperative recombination of electron-hole pairs in semiconductor quantum wells under quantizing magnetic fields // Phys. Rev. B. 2010. V. 81. № 15. P. 155314. https://doi.org/10.1103/PhysRevB.81.155314
8. Cong K., Zhang Q., Wang Y., et al. Dicke superradiance in solids [Invited] // JOSA B. 2016. V. 33. № 7. P. C80–C101. https://doi.org/10.1364/JOSAB.33.000C80
9. Vukovic N., Radovanovic J., Milanovic V., et al. Analytical expression for Risken-Nummedal-Graham-Haken instability threshold in quantum cascade lasers // Opt. Exp. 2016. V. 24. № 23. P. 26911–26929. https://doi.org/10.1364/OE.24.026911
10. Zhang W., Brown E.R., Mingardi A., et al. THz superradiance from a GaAs:ErAs quantum dot array at room temperature // Appl. Sci. 2019. V. 9. № 15. P. 3014. https://doi.org/10.3390/app9153014
11. Paik E.Y., Zhang L., Burg G.W., et al. Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures // Nature. 2019. V. 576. P. 80–84. https://doi.org/10.1038/s41586-019-1779-x
12. Pozina G., Kaliteevski M.A., Nikitina E.V., et al. Nonlinear behavior of the emission in the periodic structure of InAs monolayers embedded in a GaAs matrix: Nonlinear behavior of the emission from periodic InAs monolayers // Phys. Status Solidi B. 2016. V. 254. P. 1600402. https://doi.org/10.1002/pssb.201600402
13. Кочаровский Вл.В., Железняков В.В., Кочаровская Е.Р. и др. Сверхизлучение: принципы генерации и реализация в лазерах // УФН. 2017. Т. 187. № 4. С. 367–410. https://doi.org/10.3367/UFNr.2017.03.038098
Kocharovsky V.V., Zheleznyakov V.V., Kocharovskaya E.R., et al. Superradiance: The principles of generation and implementation in lasers // Phys. Usp. 2017. V. 60. № 4. P. 345–384. https://doi.org/ 10.3367/UFNe.2017.03.038098
14. Ханин Я.И. Основы динамики лазеров. М.: Физматлит, 1999. 368 с.
Khanin Ya.I. Fundamentals of laser dynamics. North Holland, 2012. 407 p.
15. Кочаровский Вл.В., Кукушкин В.А., Тарасов С.В. и др. Асимметричная генерация в сверхизлучающем лазере с симметричным низкодобротным резонатором // ФТП. 2019. Т. 53. № 10. С. 1321–1328. https://doi.org/10.21883/FTP.2019.10.48284.30
Kocharovsky V.V., Kukushkin V.A., Tarasov S.V., et al. On the asymmetric generation of a superradiant laser with a symmetric low-q cavity // Semiconductors. 2019. V. 53. P. 1287–1294. https://doi.org/10.1134/S1063782619100105
16. Кочаровская Е.Р., Мишин А.В., Кочаровский Вл.В. и др. Поляритонный резонанс в автомодуляции асимметричного состояния сверхизлучающего лазера // ФТП. 2022. Т. 56. № 7. С. 651–658. https://doi.org/10.21883/FTP.2022.07.52755.10
Kocharovskaya E.R., Mishin A.V., Kocharovsky Vl.V., et al. Polariton resonance in a self-modulation of an asymmetric steady-state of a superradiant laser [in Russian] // FTP. 2022. V. 56 № 7. P. 651–658. https://doi.org/10.21883/FTP.2022.07.52755.10
17. Железняков В.В., Кочаровский В.В., Кочаровский В.В. Волны поляризации и сверхизлучение в активных средах // УФН. 1989. Т. 159. № 2. С. 193–260. https://doi.org/10.3367/UFNr.0159.198910a.0193
Zheleznyakov V.V., Kocharovskii V.V., Kocharovskii V.V. Polarization waves and super-radiance in active media // Sov. Phys. Usp. 1989. V. 32. № 4. P. 835–870. https://doi.org/10.1070/PU1989v032n10ABEH002764
18. Kavokin A., Malpuech G. Cavity polaritons. Academic Press, 2003. 246 p.
19. Лукьянов В.Н., Семенов А.Т., Шелков Н.В. и др. Лазеры с распределенной обратной связью (обзор) // Квант. электрон. 1975. Т. 2. № 11. С. 2373–2398. https://doi.org/10.1070/QE1975v005n11ABEH012115
Luk’yanov V.N., Semenov A.T., Shelkov N.V., et al. Lasers with distributed feedback (review) // Sov. J. Quantum Electron. 1975. V. 5. № 11. P. 1293–1307. https://doi.org/10.1070/QE1975v005n11ABEH012115
20. Akiba S. Encyclopedic handbook of integrated optics: Distributed feedback lasers. Boca Raton: CRC Press, 2006. 11 p.
21. Ивченко Е.Л., Поддубный А.Н. Резонансная дифракция электромагнитных волн на твердом теле (обзор) // ФТТ. 2013. Т. 55. № 5. С. 833–849.
Ivchenko E.L., Poddubny A.N. Resonant diffraction of electromagnetic waves from solids (a review) // Phys. Solid State. 2013. V. 55. № 5. P. 905–923. http://dx.doi.org/10.1134/S1063783413050120