ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-07-5-12

УДК: 535.361.12

Acoustic impact on the Bessel light beams propagation in scattering media

For Russian citation (Opticheskii Zhurnal):

Белый В.Н., Казак С.Н., Ропот П.И., Хило Н.А. Акустическое воздействие на распространение бесселевых световых пучков в рассеивающих средах // Оптический журнал. 2024. T. 91. № 7. С. 5–12. http://doi.org/10.17586/1023-5086-2024-91-07-5-12

Belyi V.N., Kazak N.S., Ropot P.I., Khilo N.A. Acoustic impact on the Bessel light beams propagation in scattering media [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 5–12. http://doi.org/10.17586/1023-5086-2024-91-07-5-12

 

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Propagation of Bessel light beams in scattering media in conditions of acoustic interaction. Aim of study. Investigation of the speckle contrast reduction (“enlightment” of a scattering medium) in Bessel light beams propagation through a scattering medium by means of acoustic impact on this medium. Method. Suppression of speckle-structure by creating many statistically independent field realizations due to acoustic influence on scattering media. Main results. The influence of the properties of a scattering medium and the parameters of acoustic impact on the effect of speckle contrast reduction is investigated. The theoretical substantiation of the effect manifestation is proposed. It is based on the presence in the field of a Bessel light beam propagating in a scattering medium, a coherent component and additive noise. The coherent component occurs is caused by the self-reconstruction effect of the Bessel light beam. It is shown that the reduction of a speckle-structure is achieved via the acoustic impact, which maximize the number of statistically independent realizations of the speckle-field during image recording interval. In this way, it is demonstrated that both pulse or continuous acoustic impact can be an effective method for suppressing a noise component in a Bessel light beam. The article presents the results of an experimental study of the enlightment  effect under conditions of Bessel light beams propagation  in liquid scattering media. Practical significance. The observed effect of acoustically induced speckle contrast reduction in scattering media is of practical interest for transmitting optical images through them, for increasing the depth of tomographic vision, as well as for optical communication in free space.

Keywords:

Bessel light beam, axicon, acoustic impact, speckle contrast reduction

OCIS codes: 100.0100, 260.0260, 290.0290

References:

1.    Goodman J. Speckle phenomena in optics: Theory and applications. Bellingham, Washington, USA: SPIE Press, 2020. 468 p.

2.   Kubota S., Goodman J.W. Very efficient speckle contrast reduction realized by moving diffuser device // Appl. Opt. 2012. V. 49. Р. 4385–4391. https://doi.org/10.1364/AO.49.004385

3.   Tu S.Y., Lin H.Y., Lin M.C. Efficient speckle reduction for a laser illuminating on a micro-vibrated paper screen // Appl. Opt. 2014. V. 53. Р. E38–E46. https://doi.org/10.1364/AO.53.000E38

4.   Trisnadi J.I. Speckle contrast reduction in laser projection displays // Proc. SPIE. 2002. V. 4657. Р. 131–138. https://doi.org/10.1117/12.463781.

5.   Bashkansky M., Reintjes J. Statistics and reduction of speckle in optical coherence tomography // Opt. Lett. 2000. V. 25. Р. 545–547. https://doi.org/10.1364/ol.25.000545

6.   Rawson E.G., Nafarrate A.B., Norton R.E., et al. Speckle-free rear-projection screen using two close screens in slow relative motion // JOSA. 1976. V. 66. Р. 1290–1294.

7.    Yoon Y., Breshike Ch.J., Kendziora Ch.A., et al. Reduction of speckle noise and mitigation of beam wander in tunable external cavity quantum cascade lasers using rotating diamond/KBr pellet coupled with multimode fiber // Opt. Exp. 2019. V. 27. P. 8011–8020. https://doi.org/10.1364/OE.27.008011

8.   Mahmoud M., Qianli M.A., Flannigan L., et al. Laser speckle reduction utilized by lens vibration for laser projection applications // Eng. Res. Exp. 2019. V. 1. № 1. P. 015036. https://doi.org/10.1088/2631-8695/ab42eb

9.   Kumar V., Usmani K., Singh V., et al. Laser speckle reduction using spatially structured and temporally varying beams using double diffractive optical elements // Laser Phys. Lett. 2020. V. 17. № 3. P. 036003. https://doi.org/10.1088/1612-202X/ab723a

10. Kompanets I., Zalyapin N. Methods and devices of speckle-noise suppression (review) // Opt. Photonics J. 2020. V. 10. № 10. P. 219–250. https://doi.org/10.4236/opj.2020.1010023

11.  Xue J., Tong Z., Ma Y., et al. Fabrication of volume scattering diffusers by spin-coating SiO2 microspheres and SU-8 photoresist for speckle reduction investigation // Opt. Mater. Exp. 2022. V. 12. P. 479–488. https://doi.org/10.1364/OME.449136

12.  Xin J., Zhou W., Wang W., et al. Laser speckle reduction using polymer-stabilized liquid crystals doped with Ag nanowires // Heliyon. 2023. V. 9. № 10. P. e20934. https://doi.org/10.1016/j.heliyon.2023.e20934

13.  Deng Q.-L., Lin B.-S., Wu P.-J., et al. A hybrid temporal and spatial speckle suppression method for laser displays // Opt. Exp. 2013. V. 21. P. 31062–31071. https://doi.org/10.1364/OE.21.031062

14.  Pan J.-W., Shi Ch.-H. Speckle noise reduction in the laser mini-projector by vibrating diffuser // J. Opt. (United Kingdom). 2017. V. 19. № 4. P. 045606. https://doi.org/10.1088/2040-8986/aa608d

15.  Mizushima T., Furuya H., Mizuuchi K., et al. L-9: Late-news paper: Laser projection display with low electric consumption and wide color gamut by using efficient green SHG laser and new illumination optics // SID Symp. Digest of Technical Papers. 2006. V. 37. № 1. P. 681. https://doi.org/10.1889/1.2433329

16.  Bouchal Z., Wagner J., Chlup M. Self-reconstruction of a distorted nondiffracting beam // Opt. Commun. 1998. V. 151. Р. 207–211. https://doi.org/10.1016/S0030-4018(98)00085-6

17.  Vyas S., Kozawa Y., Sato S. Self-healing of tightly focused scalar and vector Bessel–Gauss beams at the focal plane // JOSA. A. 2011. V. 28. № 5. P. 837–843. https://doi.org/10.1364/JOSAA.28.000837

18. Blatter C., Grajciar B., Eigenwillig C.M., et al. Extended focus high-speed swept source OCT with self-reconstructive illumination// Opt. Exp. 2011. V. 19. Р. 12141–12155. https://doi.org/10.1364/OE.19.012141

19.  Belyi V.N., Kazak N.S., Khilo N.A., et al. Special features of local spatial spectrum of Bessel light beams// Opt. Commun. 2011. V. 284. P. 5399–5405. https://doi.org/10.1016/j.optcom.2011.07.036