DOI: 10.17586/1023-5086-2024-91-07-51-61
УДК: 681.785.52
Study of the effect of increased pressure in the flow cell on radiation power in the channels of a multichannel spectrophotometer
Full text on elibrary.ru
Бобе А.С., Вознесенская А.О., Поляков В.М. Исследование влияния повышенного давления в проточной кювете на мощность излучения в каналах многоканального спектрофотометра // Оптический журнал. 2024. Т. 91. № 7. С. 51–61. http://doi.org/10.17586/1023-5086-2024-91-07-51-61
Bobe A.S., Voznesenskaya A.O., Polyakov V.M. Study of the effect of increased pressure in the flow cell on radiation power in the channels of a multichannel spectrophotometer [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 51–61. http://doi.org/10.17586/1023-5086-2024-91-07-51-61
Subject of the study. The effect of increased pressure in the flow cell of a multichannel spectrophotometer on the redistribution of radiation power in fiber optic channels. Aim of study. Development of a method and algorithm for compensating for the additional error in measuring the transmittance of a substance in a multichannel spectrophotometer system, which occurs when the pressure in the flow cell changes. Method. In Comsol Multiphysics environment, based on the classical theory of elasticity, a model has been developed describing the arising mechanical stresses and changes in the deformation profile of optical windows of a flow cell for various values of increased pressure in the flow cell. Numerical modeling of the deformation profile of optical windows in the flow cell for various values of increased pressure in the flow channel was conducted. The obtained results were used to calculate the deviation of the wavefront of passing radiation and determine the distribution of irradiance on the end face of the fiber optic bundle. Using Zemax OpticStudio software package, a simulation was performed and a justification for the expediency of using an afocal or focusing forming optical system of a spectrophotometer was presented. Main results. It has been shown that increased pressure in the flow cell affects the resulting optical power in the channels of a fiber-optic multichannnel spectrophotometer. The calculated error of the obtained transmittance measurements at a pressure of 100 MPa for an afocal forming system and a seven-channel fiber-optic bundle reaches 28%. A matrix of correction coefficients and a calibration algorithm have been proposed, considering the value of increased pressure in the flow cell system and the refractive index of the analyzed substance. Practical significance. The obtained results demonstrate the necessity of considering the influence of increased pressure in in-line systems, introducing the concept of calibration coefficients, and proposing a calibration algorithm for multichannel spectrophotometers.
in-line analysis, pressure induced lensing, spectrometry, fiber optic bundle, optical systems modeling
OCIS codes: 300.6340, 280.2490, 060.2390
References:1. Guo X., Sivagurunathan K., Garcia J., et al. Laser photothermal radiometric instrumentation for fast in-line industrial steel hardness inspection and case depth measurements // Appl. Opt. 2009. № 7(48). P. C11–C23. https://doi.org/10.1364/AO.48.000C11
2. Jamison D.E., Almond S.W. Systems and methods for real time monitoring of gas hydrate formation // United States Patent US9335438B2. Publ. May, 2016.
3. Zhang K., Lu H.-B., Shao L., et al. Experimental research on ammonia concentration detection with white light-emitting diodes (Контроль концентрации аммиака с использованием светодиода белого свечения) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 9. С. 93–100. http://doi.org/10.17586/1023-5086-2021-88-09-93-100
Zhang K., Lu H.-B., Shao L., et al. Experimental research on ammonia concentration detection with white light-emitting diodes // J. Opt. Technol. 2021. V. 88. № 9. P. 548–552. https://doi.org/10.1364/JOT.88.000548
4. Liu C., Wang D., Zheng H. In situ Raman spectroscopic study of barite as a pressure gauge using a hydrothermal diamond anvil cell // Appl. Spectrosc. 2016. № 2(70). P. 347–354. http://doi.org/10.1177/0003702815620556
5. Current R.W., Tilotta D.C. Determination of total petroleum hydrocarbons in soil by on-line supercritical fluid extraction-infrared spectroscopy using a fiber-optic transmission cell and a simple filter spectrometer // J. Chromatography A. 1997. № 1–2(785). P. 269–277. http://doi.org/10.1016/S0021-9673(97)00466-4
6. Whyman R., Hunt K., Page R., et al. A high-pressure spectroscopic cell for FTIR measurements // J. Phys. E: Sci. Instruments. 2000. № 17.7. P. 559. http://doi.org/10.1088/0022-3735/17/7/005
7. Mullins O.C., Pomerantz A.E., Zuo J.Y., et al. Downhole fluid analysis and asphaltene science for petroleum reservoir evaluation // Annual Review of Chemical and Biomolecular Eng. 2014. V. 5. P. 325–345. http://doi.org/10.1146/annurev-chembioeng-060713-035923
8. Yamate T., Mullins C. Permanent optical sensor for downhole fluid analysis systems // United States Patent US 6437326 B1. Publ. Aug., 2002.
9. Mark H.L. High pressure optical cell for spectrometry // United States Patent US5949536. Publ. Sep., 1999.
10. Bobe A., Pavlova A., Polyakov V. In situ downhole fluid analysis systems using LED, laser-induced fluorescence, and uranine-traced drilling water // Appl. Spectrosc. 2023. № 1(77). P. 116–122. https://doi.org/10.1177/0003702822112884
11. Gui J.Y., Silva J.M., Carnahan J.C., et al. Online monitor for polymer processes // United States Patent US6635224B1. Publ. Aug., 2001.
12. Wynn W.H. Micro volume inline optical sensor // United States Patent US9279746B2. Publ. Aug., 2004.
13. Wynn W.H. Inline optical sensor with modular flowcell // United States Patent US9404849. Publ. Aug., 2013.
14. Shelton D.P. Lens induced by stress in optical windows for high-pressure cells // Review of Sci. Instruments. 1992. № 8(63). P. 3978–3982. http://doi.org/10.1063/1.1143248
15. Bartl G., Glaw P., Schmaljohann F., et al. Correction for stress-induced optical path length changes in a refractometer cell at variable external pressure // Metrologia. 2018. № 1(56). http://doi.org/10.1088/1681-7575/aaef4c
16. Алтухов А.А, Попов А.В, Фещенко В.С. Измеритель оптической плотности проточной жидкости // Патент РФ № RU157015U1. Бюл. 2015. № 32.
Altuhov A.A., Popov A.V., Feshchenko V.S. Flow liquid optical density meter // RF Patent № RU157015U1. Bull. 2015. № 32.
17. Архипов И.Н., Ваганов М.А., Кулаков С.В. и др. Параллельный анализатор спектра сигналов оптического диапазона // Патент РФ № RU86734U1. Бюл. 2009. № 25.
Arhipov I.N., Vaganov M.A., Kulakov S.V., et al. Parallel optical spectrum analyzer // RF Patent № RU86734U1. Bull. 2009. № 25.
18. Liston M.D., Dickinson D.G., Stark W.A. Multichannel spectrophotometer // United States Patent US4477190A. Publ. Oct., 1984.
19. Fournel J., Lunati A., Gergaud T. Spectrometer for fluid analysis // United States Patent US7982189B2. Publ. Oct., 2011.
20. Электронный ресурс URL: https://www.bakerhughes.com/evaluation/wireline-openhole-logging/fluid-characterization-and-testing (Fluid characterization and testing/ Baker Hughes).
Electronic resource URL: https://www.bakerhughes.com/evaluation/wireline-openhole-logging/fluid-characterization-and-testing (Fluid characterization and testing/ Baker Hughes).
21. Crombie A., Halford F., Hashem M., et al. Innovations in wireline fluid sampling // Oilfield Rev. 1998. № 10(3). P. 26–41.
22. DiFoggio R., Csutak S. Laser diode array downhole spectrometer // United States Patent US7,782,460. Publ. Aug., 2008.
23. Mullins O.C., Schroer J. Real-time determination of filtrate contamination during openhole wireline sampling by optical spectroscopy // SPE Annual Technical Conf. and Exhib. October 1, 2000. P. SPE-63071.
24. Mueller N. Quantification of carbon dioxide using downhole Wireline formation tester measurements // SPE Annual Technical Conf. and Exhib. October 1, 2006. P. SPE-100739.
25. Current R.W., Tilotta D.C. Determination of total petroleum hydrocarbons in soil by on-line supercritical fluid extraction-infrared spectroscopy using a fiber-optic transmission cell and a simple filter spectrometer // J. Chromatography A. 1997. № 1–2(785). P. 269–277. http://doi.org/10.1016/S0021-9673(97)00466-4
26. Mullins O.C. Hydrocarbon compositional analysis in-situ in openhole Wireline logging // SPWLA Annual Logging Symp. 2004. P. SPWLA-2004.
27. Mullins O.C., Hashem M., Elshahawi H., et al. Gas-oil ratio of live crude oils determined by near-infrared spectroscopy // Appl. Spectrosc. 2001. № 55(2). P. 197–201. http://doi.org/10.1366/0003702011951506
28. Ландау Л.Д., Лифшиц Е.М. Теория упругости. М.: Наука, 1965. 27 с.
Landau L.D., Lifshits E.M. Theory of elasticity [in Russian]. Moscow: "Nauka" Publ., 1969. 27 p.
29. Donnell L.H. Beams, plates and shells. McGraw-Hill, 1976. 482 p.
30. Egan P.F., Stone J.A., Scherschligt J.K., et al. Measured relationship between thermodynamic pressure and refractivity for six candidate gases in laser barometry // J. Vacuum Sci. & Technol. A, Vacuum, Surfaces, and Films: An Official J. American Vacuum Soc. 2019. № 37(3). http://dx.doi.org/10.1116/1.5092185
31. Waxler R.M., Farabaugh E.N. Photoelastic constants of ruby // J. Research of the National Bureau of Standards. Section A, Phys. and Chem. 1970. № 2 (74A). P. 215–220. http://dx.doi.org/10.6028/jres.074A.016