DOI: 10.17586/1023-5086-2024-91-07-62-70
УДК: 681.7-1/-9
Optical method for non-contact quality control of axicons
Full text on elibrary.ru
Nosov P.A., Morozov A.I., Machikhin A.S. Optical method for non-contact quality control of axicons [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 62–70. http://doi.org/10.17586/1023-5086-2024-91-07-62-70
Subject of study. Refractive axicons with a conical shape. Aim of study. To develop an easy-to-implement technique for axicon inspection for fast verification of its geometrical parameters. Method. The intensity distribution of a Besselian beam is acquired with the lens projection system and then analyzed by digital image processing methods. Main results. The technique for geometrical characterization of axicons for the Bessel beam formation, has been developed and approved. Practical significance. The presented technique for axicon characterization is easy-to-implement and allows fast determination of its geometrical parameters and defect detection.
axicon, Bessel beam, laser optics, optical tweezers, laser communication lines
Acknowledgements:this study is supported by Federal State Task Program of Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences (project FFNS-2022-0010).
OCIS codes: 110.0110, 140.0140
References:1. Durnin J. Exact solutions for nondiffracting beams. I. The scalar theory // JOSA A. 1987. V. 4. P. 651–654. https://doi.org/10.1364/JOSAA.4.000651
2. Durnin J., Miceli J.J., Jr., Eberly J.H. Diffraction-free beams // Phys. Rev. Lett. 1987. V. 58. P. 1499. https://doi.org/10.1103/PhysRevLett.58.1499
3. Lapointe M.R. Review on non-diffracting Bessel beam experiments // Opt. Laser Technol. 1992. V. 24. P. 315–321. https://doi.org/10.1016/0030-3992(92)90082-D
4. Minz R.A., Tiwari U., Kumar A., et al. Trapping of rare earth-doped nanorods using quasi Bessel beam optical fiber tweezers // OSA Continuum. 2021. V. № 2. P. 364–373. https://doi.org/10.1364/OSAC.417151
5. Liu Z., Tang X., Zhang Y., et al. Trapping two types of particles using a single optical fiber Bessel beam // Opt. Fiber Sensors Conf. 2020. P. 42. https://doi.org/10.1364/OFS.2020.W4.42
6. Moura T.A., Andrade U.M.S., Mendes J.B.S. Modulating the trapping and manipulation of semiconductor particles using Bessel beam optical tweezers // Opt. and Lasers in Eng. 2023. V. 170. P. 107778. https://doi.org/10.1016/j.optlaseng.2023.107778
7. Fahrbach F.O., Rohrbach A. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media // Nature Commun. 2012. V. 3. P. 632–638. https://doi.org/10.1038/ncomms1646
8. Liu C., Zhao Z., Jin C., et al. High-speed, multi-modal, label-free imaging of pathological slices with a Bessel beam // Biomed. Opt. Exp. 2020. V. 11 № 5. P. 2694–2704. https://doi.org/10.1364/BOE.391143
9. Sandeep S., Khairyanto C.S., Aung A., et al. Bessel beams in ophthalmology: A review // Micromachines. 2023. V. 14. № P. 1672. https://doi.org/10.3390/mi14091672
10. Matsuoka Y., Kizuka Y., Inoue T. The characteristics of laser micro drilling using a Bessel beam // Appl. Phys. A. 2006. V. 84. P. 423–430. https://doi.org/10.1007/s00339-006-3629-6
11. Stoian R., Bhuyan M.K., Zhang G., et. al. Ultrafast Bessel beams: Advanced tools for laser materials processing // Adv. Opt. Technol. 2018. V. 7. P. 165–174. https://doi.org/10.1515/aot-2018-0009
12. Lutz C., Schwarz S., Marx J., et al. Multi-Bessel beams generated by an axicon and a spatial light modulator for drilling applications // Photonics. 2023. V. 10. № 4. P. 413. https://doi.org/10.3390/photonics10040413
13. Белый В.Н., Курилкина С.Н., Хило Н.А. и др. Формирование бесселевых световых пучков с субволновым диаметром осевого максимума для диагностики и нелинейной фотолитографии полупроводниковых материалов // Оптический журнал. 2023. Т. 90. № 11. С. 6–16. http://doi.org/10.17586/1023-5086-2023-90-11-06-16
Belyi V.N., Kurilkina S.N., Khilo N.A., et al. Formation of Bessel light beams with subwavelength diameter of axial maximum for diagnostics and nonlinear photolithography of semiconductor materials // J. Opt. Technol. 2023. V. 90. № 11. P. 00–00. http://doi.org/10.1364/JOT.90.000000
14. Scott G., Mcardle N. Efficient generation of nearly diffraction-free beams using an axicon // Opt. Eng. 1992. V. 31. P. 2640–2643. https://doi.org/10.1117/12.60017
15. Turunen J., Vasara A., Friberg A.T. Holographic generation of diffraction-free beams // Appl. Opt. 1988. V. 27. P. 3959–3962. https://doi.org/10.1364/AO.27.003959
16. Davis J.A., Carcole E., Cottrell D.M. Nondiffracting interference patterns generated with programmable spatial light modulators // Appl. Opt. 1996. V. 35. P. 599–602. https://doi.org/10.1364/AO.35.000599
17. Aruga T. Generation of long-range nondiffracting narrow light beams // Appl. Opt. 1997. V. 36. P. 3762–3768. https://doi.org/10.1364/AO.36.003762
18. Reddy I.V.A.K., Bertoncini A., Liberale C. 3D-printed fiber-based zeroth- and high-order Bessel beam generator // Optica. 2022. V. 9. P. 645–651. https://doi.org/10.1364/OPTICA.453839
19. Zhu X., Schülzgen A., Li L., et al. Generation of controllable nondiffracting beams using multimode optical fibers // Appl. Phys. Lett. 2009. V. 94. P. 201102-1–201102-3. https://doi.org/10.1063/1.3138780
20. Filipkowski A., Piechal B., Pysz D., et al. Nanostructured gradient index microaxicons made by a modified stack and draw method // Opt. Lett. 2015. V. 40. P. 5200–5203. https://doi.org/10.1364/OL.40.005200
21. Khonina S.N., Ustinov A.V. Very compact focal spot in the near-field of the fractional axicon // Opt. Commun. 2017. V. 391. P. https://doi.org/10.1016/j.optcom.2016.12.034
22. Gorelick S., Paganin D.M., Marco A. Refractive micro-optical elements with arbitrary exponential profiles // Appl. Photonics. 2020. V. 5. P. 106110. https://doi.org/10.1063/5.0022720
23. Koronkevich V.P., Mikhaltsova I.A., Churin E.G., et al. Lensacon // Appl. Opt. 1995. V. 53. P. 5761–5772. https://doi.org/10.1364/AO.34.005761
24. Хонина С.Н., Казанский Н.Л., Устинов А.В. и др. Линзакон: непараксиальные эффекты // Оптический журнал. 2011. Т. 78. № 11. С. 44–51.
Khonina S.N., Kazanskiy N.L., Ustinov A.V., et al. The lensacon: Nonparaxial effects // J. Opt. Technol. 2011. V. 78. P. 724–729. https://doi.org/10.1364/JOT.78.000724
25. Brunne J., Wapler M. C., Wallrabe U. Fast and robust piezoelectric axicon mirror // Opt. Lett. 2014. V. 39. P. 4631–4634. https://doi.org/10.1364/OL.39.004631
26. Рыжевич А.А., Балыкин И.В., Железнякова Т.А. Параметры качества бесселевых световых пучков нулевого порядка // ЖПС. 2018. Т. 85. № 1. С. 144–153.
Ryzhevich A.A., Balykin I.V., Zheleznyakova T.A. Quality parameters of zero order bessel light beams [in Russian] // Zhurnal Prikladnoii Spektroskopii. 2018. V. 85. P. 144–153.
27. Khonina S.N., Kazanskiy N.L., Khorin P.A., et al. Modern types of axicons: New functions and applications // Sensors. 2021. V. 21 P. 6690. https://doi.org/10.3390/s21196690
28. ГОСТ Р ИСО 11146-1. Национальный стандарт российской федерации. Лазеры и лазерные установки (системы). Методы измерений ширин, углов расходимости и коэффициентов распространения лазерных пучков. М.: Стандартинформ, 2010. 20 с.
GOST R (Russian National Standard) 11146-1-2008 (ISO 11146-1:2005). Lasers and laser-related equipment — Test methods for laser beam widths, divergence angles and beam propagation ratios — Part 1: Stigmatic and simple astigmatic beams [in Russian]. Introd. 01/01/2010. Moscow: "Standardinform" Publ., 2010. 20 p.
29. Пахомов И.И., Рожков О.В., Рождествин В.Н. Оптико-электронные квантовые приборы: учеб. пособие для вузов. М.: Радио и связь, 1982. 456 с.
Pakhomov I.I., Rozhkov O.V., Rozhdestvin V.N. Optical-electronic quantum devices [in Russian]. Moscow: "Radio and Sviaz" Publ., 1982. 456 p.
30. Khonina S.N., Kotlyar V.V., Skidanov R.V., et al. Rotation of microparticles with Bessel beams generated by diffractive elements // J. Modern Opt. 2004. V. 51. P. 2167–2184. https://doi.org/10.1080/09500340408232521