DOI: 10.17586/1023-5086-2024-91-08-3-13
УДК: 621.372.821.3, 621.383, 621.391.822
The effect of speckle rotation at the interference of optical vortices and waveguide modes of an optical fiber
Full text on elibrary.ru
Кизеветтер Д.В., Ильин Н.В. Эффект поворота спеклов при интерференции оптических вихрей и волноводных мод волоконного световода // Оптический журнал. 2024. Т. 91. № 8. С. 3–13. http://doi.org/10.17586/1023-5086-2024-91-08-3-13
Kiesewetter D.V., Ilyin N.V. The effect of speckle rotation at the interference of optical vortices and waveguide modes of an optical fiber [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 8. P. 3–13. http://doi.org/10.17586/1023-5086-2024-91-08-3-13
Subject of study. Interference of waveguide modes and optical vortices in multimode optical fibers and free space, as well as speckle structures resulting from such interference. Aim of study. Creation of the simplest physical model to explain the effect of rotation of speckles formed by the outgoing radiation of a multimode fiber when moving the observation plane and estimation of speckle rotation parameters based on the experimental study. Method. Numerical simulation of the effect was performed in the approximation of linearly polarized mode groups for waveguide modes and optical vortices of a multimode optical fiber with a step index profile. For the experimental study, optical vortices and waveguide modes of the optical fiber were excited by an oblique focused laser beam shifted relative to the axis. The outgoing radiation was projected onto the photodetector matrix of
the camera. The intensity distribution of the outgoing radiation at different distance from the camera to the focusing lens were obtained. Main results. The effect of rotation of speckles resulting from interference of optical vortices and the main waveguide mode during longitudinal movement along the axis of the fiber is explained using the simplest physical model. It is shown that the obtained results of numerical simulation can be generalized to the more general case of interference of various waveguide
modes and vortices. The effect of rotation of speckles of radiation coming out of the optical fiber when moving the observation plane has been experimentally confirmed. The trajectory of the motion of the speckles when moving the observation plane near the lens focus was visualized and determined, and the rotation parameters were calculated. Practical significance. The results obtained in this work can be used to design fiber-optic sensors, in particular speckle interferometers.
fiber, optical vortex, speckle, interference, numerical modeling
OCIS codes: 060.2310, 120.6150
References:1. Feng L., Li Y., Wu S., Li W., Qiu J., Hongxiang Guo, Xiaobin Hong, Yong Zuo, Jian Wu. A review of tunable orbital angular momentum modes in fiber: Principle and generation // Appl. Sci. 2019. V. 9. P. 2408. https://doi.org/10.3390/app9122408
2. Willner A.E., Pang K., Song H., Zou K., Zhou H. Orbital angular momentum of light for communications // Appl. Phys. Rev. 2021. V. 8. P. 041312. https://doi.org/10.1063/5.0054885
3. Pang F., Xiang L., Liu H., Zhang L., Wen J., Zeng X., Wang T. Review on fiber-optic vortices and their sensing applications // Journal of Lightwave Technology. 2021. V. 39. № 12. P. 3740–3750. https://opg.optica. org/jlt/abstract.cfm?URI=jlt-39-12-3740
4. Volyar A.V., Fadeeva T.A. Vortex nature of optical fiber modes: I. Structure of eigenmodes // Technical Physics Letters. 1996. V. 22. № 8. P. 57–62.
5. Volyar A.V., Fadeeva T.A. Vortex nature of optical fiber modes: II. Propagation of optical vortices // Technical Physics Letters. 1996. V. 22. № 8. P. 63–67.
6. Ramachandran S., Kristensen P. Optical vortices in fiber // Nanophotonics. 2013. V. 2. № 5–6. P. 455–474. https://doi.org/10.1515/nanoph-2013-0047
7. Zhu J., Yao H., Cheng P., Shi F., Zeng X. Generating vortex Bessel-like beams based on all-fiber mode conversion // Proc. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications (IPOC). Beijing. China. 2020. P. 1–2. https://doi.org/10.1364/ACPC.2020.M4A.106
8. Zhang W., Li X., Zhang L., Huang L., Lu F., Gao F. Generation of cylindrical vector beams and optical vortex in a solid-core ring fiber based on an acoustically induced fiber grating // IEEE Journal of Selected Topics in Quantum Electronics. 2020. V. 26. № 4. P. 4500205. http://doi.org/10.1109/JSTQE.2019.2906274
9. Ji K., Lin D., Davidson I.A., Wang S., Carpenter J., Amma Y., Jung Y., Richardson D.J. Generation of highpower picosecond optical vortex beams from a Yb-doped multicore fiber amplifier // Proc. 2022 Conference on Lasers and Electro-Optics (CLEO). San Jose. CA. USA. 2022 P. 1–2. https://doi.org/10.1364/CLEO_AT.2022.ATh2C.1
10. Feng J., Zhou J., Xu J., Feng Y., Zeng X. Generating femtosecond vortex beams based on broadband LPFG in Figure-9 mode-locked fiber laser // IEEE Photonics Technology Letters. 2022. V. 34. № 12. P. 625–628. https://doi.org/10.1109/JLT.2017.2676241
11. Vikulin D., Barshak E., Lapin B., Enina A., Alexeyev C., Yavorsky M. All-fiber spin-dependent optical vortex generation via flexural acoustic wave // Proc. 2021 International Conference on Information Technology and Nanotechnology (ITNT). Samara. Russian Federation. 2021. P. 1–4. http://doi.org/10.1109/ITNT52450.2021.9649221
12. Wu H., Xu J., Wang L., Teng L., Lv S., Pang F., Zeng X. Mode-locked vortex fiber laser based on high-order mode conversion // Proc. 2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN). Xi'an. China. 2021. P. 613–616. http://doi.org/10.1109/JPHOT.2021.3077571
13. Dong Z., Sun H., Zhang Y., Zou J., Xu L., Luo Z. Visiblewavelength-tunable, vortex-beam fiber laser based on a long-period fiber grating // IEEE Photonics Technology Letters. 2021. V. 33. № 21. P. 1173–1176. https://doi.org/10.1109/LPT.2021.3111191
14. Pryamikov A.D., Alagashev G.K. Vortex supported waveguiding in microstructured optical fibers // Proc. 22nd International Conference on Transparent Optical Networks (ICTON). Bari. Italy. 2020. P. 1–3. http://doi.org/10.1109/ICTON51198.2020.9203377
15. Yue Y., Geng W. Beyond octave-spanning supercontinuum generation of optical vortices in ring-core photonic crystal fiber // Proc. 30th Wireless and Optical Communications Conference (WOCC). Taipei. Taiwan. 2021. P. 195–196. https://doi.org/10.1109/WOCC53213.2021.9602996
16. Alexeyev C.N., Barshak E.V., Lapin B.P., Vikulin D., Yavorsky M. Propagation of optical vortices in fiber ring resonators // Proc. 2021 International Conference on Information Technology and Nanotechnology (ITNT). Samara. Russian Federation. 2021. P. 1–4. https://doi.org/10.1109/ITNT52450.2021.9649388
17. Alexeyev C., Barshak E., Vikulin D., Lapin B., Yavorsky M. Propagation of optical vortices in the system of twisted anisotropic and multihelical optical fibers // 2021 International Conference on Information Technology and Nanotechnology (ITNT). Samara. Russian Federation. 2021. P. 1–4. https://doi.org/10.1109/ITNT52450.2021.9649337
18. Wang J., Liu J., Li S., Yifan Z., Jing D., Zhu L. Orbital angular momentum and beyond in free-space optical communications // Nanophotonics. 2022. V. 11. № 4. P. 645–680. https://doi.org/10.1515/nanoph-2021-0527
19. Kovalev A.A., Kotlyar V.V., Porfirev A.P. Orbital angular momentum and topological charge of a multivortex Gaussian beam // Journal of the Optical Society of America A. 2020. V. 37. № 11. P. 1740–1747. https://doi.org/10.1364/JOSAA.401561
20. Kotlyar V.V., Kovalev A.A. Optical vortex beams with a symmetric and almost symmetric OAM spectrum // Journal of the Optical Society of America A. 2021. V. 38. P. 1276–1283. https://doi.org/10.1364/josaa.432623
21. Kovalev A.A., Kotlyar V.V. Orbital angular momentum of superpositions of optical vortices perturbed by a sector aperture // Photonics. 2022. V. 9. № 531. https://doi.org/10.3390/photonics9080531
22. Kotlyar V., Kovalev A., Nalimov A., Kozlova E. Preservation of optical vortex OAM after distortion by a diaphragm // Proc. 2022 International Conference on Electrical Engineering and Photonics (EExPolytech). St. Petersburg. Russian Federation. 2022. P. 305–309. https://doi.org/10.1109/EExPolytech56308.2022. 9950990
23. Kizevetter D.V. How defects of the end surfaces of a lightguide affect the mode-interference parameters when optical vortices are present // Journal of Optical Technology. 2013. V. 80. № 1. P. 7–11. https://doi.org/10.1364/JOT.80.000007
24. Kizevetter D. V., Iljin N. V., Malyugin V. I., Changsen Sun. Investigation of speckle structures formed by the optical vortices of fiber lightguides // Journal of Optical Technology. 2015. V. 82. № 3. P. 174–177. https://doi.org/10.1364/JOT.82.000174
25. Il’in N.V., Kiesewetter D.V. Method of optical vortices excitation in graded index optical fibers // St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2010. V. 2(98). P. 96–102.
26. Kiesewetter D.V., Ilyin N.V. The intensity distribution of the light near the output end of the optical fiber in the presence of optical vortices // St. Petersburg Polytechnic University Journal. Physics and Mathematics. 2013. V. 1(165). P. 108–113.