ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-09-18-28

УДК: 681.78

A model and algorithm for calculating the irradiation of a space object by Earth radiation

For Russian citation (Opticheskii Zhurnal):

Меденников П.А., Павлов Н.И. Модель и алгоритм расчета облученности космического объекта излучением Земли // Оптический журнал. 2024. Т. 91. № 9. С. 18–28. http:// doi.org/10.17586/1023-5086-2024-91-09-18-28

 

Medennikov P.A., Pavlov N.I. A model and algorithm for calculating the irradiation of a space object by Earth radiation [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 9. P. 18–28. http://doi.org/10.17586/1023-5086-2024-91-09-18-28

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. A model of the Earth radiation for calculating the spectral irradiation density of a space object presented by a polygonal model as it moves along the trajectory over various parts of the Earth's surface with due regard for the influence of solar illumination, climatic zone, seasonal factor, cloudiness, and orbital altitude. Aim of study. Development of an algorithm for calculating the spectral density of irradiation of space objects, close in its capabilities to MODTRAN and automatically adjusts to changing illumination conditions in their movement in near-Earth space. Method. Mathematical simulation of the Earth's radiation as a set (superposition) of point sources — elementary, layered volumetric fragments of the atmosphere supported by a fragment of the Earth's surface, using engineering calculation techniques and numerical estimates of optical characteristics of the atmosphere. The contributions of scattered (re-reflected) solar and intrinsic thermal radiation are allowed for in the simulation. Main results. An iterative algorithm for calculating the spectral density of irradiation of a surface element (facet) of a space object by the Earth radiation with a programmable retrieval from a database of parameters required for the calculations. The operation of the iterative algorithm is illustrated by an example of calculating the energy irradiance integral over spectrum of a space object (facet) located at an altitude of 300 km, due to radiation from the Earth. Practical significance. The presented iterative algorithm for calculating the spectral irradiation density of a space object with a database of parameters of the Earth's surface, atmosphere, cloud cover, etc. presents an important tool for simulating the energy reflective and radiative characteristics of space objects in the near-Earth space.

Keywords:

simulation, near-Earth space, space object, facet, spectral density of energy irradiation, earth surface, atmosphere, climatic zones, database

OCIS codes: 000.3860

References:

1.    Molotov I.E., Agapov V.M., Streltsov A.I., et al. Problems of optical monitoring of space debris [in Russian] // Preprints of Keldysh Institute of Applied Mathematics RAS. 2020. № 7. 17 p. http://doi.org/10.20948/prepr-2020-7
2.    Bogoyavlenskiy A.I., Kamenev A.A., Poluyan M.M., et al. Modeling of spectroenergetic characteristics of space objects in the optical range // Siberian J. Sci. and Technol. 2018. V. 19. № 2. P. 200–211. http://doi.org/10.31772/2587-6066-2018-19-2-200-211
3.    Lemeshevsky S.V., Chuiko M.M., Shnip A.I., et al. Mathematical modeling of thermal conditions of non-hermetic spacecrafts [in Russian] // Informatics. 2019. V. 16. № 4. P. 25–39.
4.    Oleinykov M.I., Khatanzeiskaya M.A., Osipova I.V. Modeling of the reflective characteristics of space objects taking into account the Earth’s rereflected solar radiation [in Russian] // Proc. of the TSU. Technical Sci. 2021. № 3. P. 313–320. http://doi.org/10.24412/2071-6168-2021-3-313-320
5.    Znamensky I.V., Tungushpaev A.T. Regarding the possibility of detecting space objects in spectral range of 8–12 µm // Photonics. 2022. V. 16. № 1. P. 44–58. http://doi.org/10.22184/1993-7296.FRos.2022.16.1.44.58
6.    Dzitoev A.M., Lapovok E.V., Penkov M.M., et al. Calculation of the effect of earthsine and radiation on radiation-panel performance for space-based telescopes // J. Opt. Technol. 2017. V. 84. № 10. Р. 688–693. https://doi.org/10.1364/JOT.86.000688
7.    Standard: Solar constant and zero air mass Solar spectral irradiance tables ASTM E490-00a. 2019. 16 p.
8.    Berk A., Conforti P., Kennett R., et al. MODTRAN6: A major upgrade of the MODTRAN radiative transfer code // Proc. SPIE 9088. Algorithms and Technologies for Mulispectral, Hyperspectral, and Ultraspectral Imagery XX, 90880H (June 13, 2014). https://doi.org/10.1117/12.2050433
9.    Abakumova A.A., Malinova T.P., Medennikov P.A., Pavlov N.I. Algorithmic simulation-modeling software complex for the investigation and development of optoelectronic observation systems // J. Opt. Technol. 2019. V. 86. № 8. P. 503–509. https://doi.org/10.1364/JOT.86.000503
10.    Mc Clatchey R.A., Fenn R.W., Selby J.E.A. Optical properties of the atmosphere (revised). Report-AFCRL-71-0279. AFCRL, Bedford, 1971. 88 p.
11.    Filippov V.L., Ivanov V.P., Yatsyk V.S. Atmosphere and modeling optoelectronic systems operating in changing external conditions [in Russian]. Kazan: Kazan University Publ., 2015. 632 p.
12.    Kiseleva M.S., Mirzoeva L.A., Golovanov S.N., et al. New methods of calculating the transmittance of the atmosphere, using the effective parameters of the atmosphere and optoelectronic systems // J. Opt. Technol. 2006. V. 73. № 10. P. 723–728. https://doi.org/10.1364/JOT.73.000723
13.    Deirmendjian D. Electromagnetic scattering on spherical polydispersions. N.Y.: American Elsevier Publ. Comp., 1969. 290 p.
14.    Filippov V.L., Tantashev M.V., Venderevskaya I.A. Optical model of the atmosphere for problems of calculating the irradiance of the entrance pupils of optoelectronic systems // J. Opt. Technol. 2014. V. 81. № 4. Р. 168–173. https://doi.org/10.1364/JOT.81.000.168
15.    Filippov V.L., Venderevskaya I.A. Model calculation of the spectral transmittance and radiance of the atmosphere as the vary with weather conditions: Development results // J. Opt. Technol. 2017. V. 84. № 3. Р. 167–172. https://doi.org/10.1364/JOT.84.000167
16.    A preliminary cloudless standard atmosphere for radiation computation. Report Int. Ass. for Meteorology and Atm. Physics WCP-112 WMO/TD-NO.24. Boudler, Colorado, USA. 1984. 64 p.
17.    Galileiskii V.P., Grishin A.I., Morozov A.M. Numerical simulation of angular distribution of the scattered solar radiation brightness in Earth atmosphere [in Russian]  // Atmosphere and Ocean Optics. 2013. V. 26. № 11. P. 1005–1007.
18.    Lobanova M.A., Vasilyev A.V., Mel’nikova I.N. The phase function asymmetry parameter dependence on scattering media properties [in Russian] // Current Problems in Remote Sensing of the Earth from Space. 2010. V. 7. P. 147–157.