DOI: 10.17586/1023-5086-2025-92-04-107-113
УДК: 543.426
Photoluminescence study of inorganic CsPbBr3 perovskite nanocrystals localized in an electrodynamic trap
Семынин М.С., Романова А.В., Татаринов Д.А. Исследование фотолюминесценции неорганических нанокристаллов перовскита CsPbBr3, локализованных в линейной квадрупольной электродинамической ловушке // Оптический журнал. 2025. Т. 92. № 4. С. 107–113. http://doi.org/10.17586/1023-5086-2025-92-04-107-113
Semynin M.S., Romanova A.V., Tatarinov D.A. Photoluminescence study of inorganic CsPbBr3 perovskite nanocrystals localized in a linear quadrupole electrodynamic trap [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 107–113. http://doi.org/10.17586/1023-5086-2025-92-04-107-113
Subject of study. CsPbBr3 perovskite nanocrystals localized in a quadrupole electrodynamic trap. Aim of study. Establishing the dependence of photoluminescence spectral characteristics of perovskite nanocrystals on the localization environment: In colloidal solution and in a quadrupole electrodynamic trap. Method. To deliver perovskite nanocrystals to the trap, the “Paper Spray” method was used. Spraying from paper cartridges was carried out by applying a direct current to them. Spectroscopy of localized particles was carried out under ultraviolet laser excitation using a monochromator and detector. Main results. Photoluminescence spectra were obtained for perovskite nanocrystals in colloidal solution and for nanocrystals localized in a quadrupole electrodynamic trap. A dependence was established, demonstrating a narrowing of the photoluminescence spectrum of localized perovskite nanocrystals compared to the spectrum of the colloidal solution. Practical significance. The results obtained in this work can become a platform for a deeper analysis of the influence of various parameters, such as particle size, shape, surface states, chemical composition, geometric orientation and environment, on the optical properties of nanomaterials.
perovskite nanocrystals, quadrupole electrodynamic traps, electrospraying, photoluminescence
Acknowledgements:the work was carried out with the support of a grant for Masters and PhD students of the physics and technology mega faculty of ITMO University. This study was supported by the Russian Science Foundation (Project 22-42-05002). The authors acknowledge Saint-Petersburg State University for TEM images (Project AAAA-A19-119091190094-6)
OCIS codes: 300.6550, 020.7010, 160.4236
References:1. Wester R., Gianturco F.A., Werner H.-J. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions // Journal of Physics B: Atomic, Molecular and Optical Physics. 2009. V. 42. № 15. P. 154001. https://doi.org/10.1088/0953-4075/42/15/154001
2. Rainò G., Yazdani N., Boehme S.C. Ultra-narrow roomtemperature emission from single CsPbBr3 perovskite quantum dots // Nat. Commun. 2022. V. 13. № 1. P. 2587. https://doi.org/10.1038/s41467-022-30016-0
3. Zhou J., Chizhik A.I., Chu S. Single-particle spectroscopy for functional nanomaterials // Nature. 2020. V. 579. № 7797. P. 41–50. https://doi.org/10.1038/s41586-020-2048-8
4. Cao Z., Hu F., Zhang C. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: A review // Advanced Photonics. 2020. V. 2. № 5. P. 8–10. https://doi.org/10.1117/1.AP.2.5.054001
5. Shen W., Chen J., Wu J. Nonlinear optics in lead halide perovskites: Mechanisms and applications // ACS Photonics. 2021. V. 8. № 1. P. 113–124. https://doi.org/10.1021/acsphotonics.0c01501
6. Liu M., Grandhi G.K., Matta S. Halide perovskite nanocrystal emitters // Advanced Photonics Research 2021. V. 2. № 3. P. 2000118. https://doi.org/10.1002/adpr.202000118
7. Manser J.S., Christians J.A., Kamat P.V. Intriguing optoelectronic properties of metal halide perovskites // Chemical Reviews. 2016. V. 116. № 21. P. 12956–13008. https://doi.org/ 10.1021/acs.chemrev.6b00136
8. Xing G., Mathews N., Sun S. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3 // Science. 2013. V. 342. № 6156. P. 344–347. https://doi.org/10.1126/science.1243167
9. Chiba T., Hayashi Y., Ebe H. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices // Nature Photonics. 2018. V. 12. № 11. P. 681–687. https://doi.org/10.1038/s41566-018-0260-y
10. Yakunin S., Protesescu L., Krieg F. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites // Nature Communications 2015. V. 6. № 1. P. 8056. https://doi.org/10.1038/ncomms9056
11. Utzat H., Sun W., Kaplan A.E.K. Coherent single-photon emission from colloidal lead halide perovskite quantum dots // Science. 2019. V. 363. № 6431. P. 1068–1072. https://doi.org/10.1126/science.aau7392
12. Becker M.A., Scarpelli L., Nedelcu G. Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals // Nano Letters. 2018. V. 18. № 12. P. 7546–7551. https://doi.org/10.1021/acs.nanolett.8b03027
13. Rainò G., Becker M.A., Bodnarchuk M.I. Superfluorescence from lead halide perovskite quantum dot superlattices // Nature. 2018. V. 563. № 7733. P. 671–675. https://doi.org/10.1038/s41586-018-0683-0
14. Hillenkamp F. MALDI MS. A Practical Guide to Instrumentation, Methods, and Applications. Wiley Blackwell, 2014. 459 p. 15. Holle A., Haase A., Kayser M. Optimizing UV laser focus profiles for improved MALDI performance // Journal of Mass Spectrometry. 2006. V. 41. № 6. P. 705–716. https://doi.org/10.1002/jms.1041
16. Golovlev V.V., Allman S.L., Garrett W.L. Laser-induced acoustic desorption // International Journal of Mass Spectrometry and Ion Processes. 1997. V. 169. P. 69–78. https://doi.org/10.1016/S0168-1176(97)00209-7
17. Ma X., Zhang Y., Lei H.R. Laser-induced acoustic desorption // MRS Bulletin. 2019. V. 44. № 5. P. 372–381. https://doi.org/10.1557/mrs.2019.105
18. Protesescu L., Yakunin S., Bodnarchuk M.I. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut // Nano Letters. 2015. V. 15. № 6. P. 3692–3696. https://doi.org/10.1021/nl5048779
19. Liu J., Wang H., Manicke N.E. Development, characterization, and application of paper spray ionization // Analytical Сhemistry. 2010. V. 82. № 6. P. 2463–2471. https://doi.org/10.1021/ac902854g