ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-04-14-21

УДК: 621.315:592

Influence of capping layer growth mode on the photoluminescence of InAs quantum dots in silicon

For Russian citation (Opticheskii Zhurnal):

Лендяшова В.В., Илькив И.В., Талалаев В.Г., Шугабаев Т., Резник Р.Р., Цырлин Г.Э. Оптические свойства квантовых точек арсенида индия InAs в кремнии // Оптический журнал. 2025. Т. 92. № 4. С. 14–21. http://doi.org/10.17586/1023-5086-2025-92-04-14-21

 

Lendyashova V.V., Ilkiv I.V., Talalaev V.G., Shugabaev T., Reznik R.R., Cirlin G.E. Optical properties of InAs quantum dots in a Si matrix beam [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 14–21. http://doi.org/10.17586/1023-5086-2025-92-04-14-21

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Silicon Si epitaxial layers with embedded indium arsenide InAs quantum dots. Aim of study. Experimental study of the luminescent characteristics of InAs quantum dots in a Si matrix and analyze the relationship between the temperature and growth method of the capping Si layer and the photoluminescence intensity of the heterostructure. Method. Si epitaxial layers with embedded InAs quantum dots were obtained by molecular beam epitaxy technology. The optical properties were studied using low-temperature photoluminescence at 10–120 K. Main results. The influence of growth regimes of the silicon capping layer on the optical properties of heterostructures with submonolayer InAs quantum dots embedded in a silicon matrix has been studied. The photoluminescence signal at 1.65 μm from submonolayer quantum dots at low temperatures up to 120 K was obtained. It was established that the use of a two-stage method of silicon overgrowing InAs nanoislands makes it possible to increase the photoluminescence intensity by improving the crystalline quality of heterostructures. Analysis of the temperature dependence allowed us to calculate an activation energy for electrons confined in the quantum dot’s potential well at the level of the thermal energy at room temperature (30 and 25 meV respectively). Practical significance. The results obtained in the study of the optical properties of heterostructures with submonolayer InAs quantum dots can serve as a basis for the development of new optoelectronic devices based on silicon technologies.

Keywords:

quantum dots, indium arsenide, molecular beam epitaxy, semiconductors, silicon, heterostructures

Acknowledgements:

optical measurements were carried out with the financial support of the Russian Science Foundation Grant № 23-79-01117. For growth of experimental samples the authors acknowledge Saint-Petersburg State University for a Research Project № 87465891. Structural properties of grown samples were studied under support of the Ministry of Science and Higher Education of the Russian Federation, Research Project № 2019-1442 (Project reference number FSER-2020-0013)

OCIS codes: 130.5990, 040.6040, 130.0250, 130.3120, 060.4510

References:

1. Luo W., Cao L., Shi Y. et al. Recent progress in  quantum photonic chips for quantum communication  and internet // Light Sci. Appl. 2023. V. 12. № 1. P. 175. https://doi.org/10.1038/s41377-023-01173-8
2. Lake D.P., Mitchell M., Jayakumar H. et al. Efficient  telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks // Appl. Phys.   Lett. 2016. V. 108. № 3. https://doi.org/10.1063/1.4940242
3. Ko Y.-H., Kim K.-J., Han W.S. Monolithic growth of GaAs laser diodes on Si (001) by optimal AlAs nucleation  with thermal cycle annealing // Opt. Mater. Express. 2021. V. 11. № 3. P. 943–951. https://doi.org/10.1364/OME.411328
4. Wang T., Liu H., Lee A. et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates // Opt. express. 2011. V. 19. № 12. P. 11381–11386. https://doi.org/10.1364/OE.19.011381
5. Piriyev M., Loget G., Leger Y. et al. Photoelectrode/electrolyte interfacial band lineup engineering with alloyed III–V thin films grown on Si substrates //J. Mater. Chem. C. 2024. V. 12. № 3. P. 1091–1097. https://doi.org/10.1039/D3TC02556J
6. Fedorov V.V., Dvoretckaia L.N., Mozharov A.M. et al. Dual-functional light-emitting and photo-detecting GaAsPN heterostructures on silicon // Mater. Sci. Semicond. Process. 2023. V. 168. P. 107867. https://doi.org/10.1016/j.mssp.2023.107867
7. Alzoubi T., Usman M., Benyoucef M, Reithmaier J. Growth of InAs quantum dots and dashes on silicon substrates: Formation and characterization // J. Cryst. Growth. 2011. V. 323. № 1. P. 422–425. https://doi.org/10.1016/j.jcrysgro.2010.11.170
8. Benyoucef M., Usman M., Reithmaier J. Bright light emissions with narrow spectral linewidths from single InAs/GaAs quantum dots directly grown on silicon      substrates // Appl. Phys. Lett. 2013. V. 102. № 13. P. 132101. https://doi.org/10.1063/1.4799149
9. Benyoucef M., Reithmaier J. Direct growth of III–V quantum dots on silicon substrates: structural and optical properties // Semicond. Sci. Technol. 2013. V. 28. № 9. P. 094004. https://doi.org/10.1088/0268-1242/28/9/094004
10. Cirlin G.E., Dubrovskii V.G., Petrov V.N. et al. Formation of InAs quantum dots on a silicon (100)  surface // Semicond. Sci. Technol. 1998. V. 13. № 11. P. 1262. https://doi.org/10.1088/0268-1242/13/11/005
11. Илькив И.В., Лендяшова В.В., Бородин Б.Б. и др. Формирование наноостровков InAs на поверхности кремния и гетероструктур на их основе // Физика и техника полупроводников. 2023. Т. 57. № 5. С. 332–336. https://doi.org/10.21883/FTP.2023.05.56199.26k
 Ilkiv I.V., Lendyashova V.V., Borodin B.B. et al. Formation of InAs nanoislands on silicon surfaces and heterostructures based on them // Semiconductors. 2023. V. 57. № 5. P. 322. https://doi.org/10.21883/0000000000
12. Ishizaka A., Shiraki Y. Low temperature surface cleaning of silicon and its application to silicon MBE // J.Electrochem. Soc. 1986. V. 133. № 4. P. 666. https://doi.org/10.1149/1.2108651
13. Hansen L., Bensing F., Waag A. InAs quantum dots embedded in silicon // Thin Solid Films. 2000. V. 367. № 1–2. P. 85–88. https://doi.org/10.1016/S0040-6090(00)00700-8
14. Yitamben E., Butera R.E., Swartzentruber B.S. et al. Heterogeneous nucleation of pits via step pinning during Si (100) homoepitaxy // New J. Phys. 2017. V. 19. № 11. P. 113023. https://doi.org/10.1088/1367-2630/aa9397
15. Bekhouche H., Rahou D., Gueddim A. et al. Electron states, effective masses and transverse effective charge of InAs quantum dots // Optical and Quantum Electronics. 2018. V. 50. P. 1–8. https://doi.org/10.1007/s11082-018-1576-z
16. Денисов Д.В., Серенков И.Т., Сахаров В.И. и др. Молекулярно-пучковая эпитаксия и свойства гетероструктур с InAs нанокластерами в Si матрице // Физика твердого тела. 2003. Т. 45. № 11. С. 2090–2098. https://doi.org/10.1134/1.1626762
 Denisov D.V., Serenkov I.T., Sakharov V.I. et al. Molecular-beam epitaxy and properties of heterostructures   with InAs nanoclusters in an Si matrix // Physics of  the solid state. 2003. V. 45. № 11. P. 2194–2202. https://doi.org/10.1134/1.1626762
17. Benyoucef M., Alzoubi T., Reithmaier J.P. et al. Nanostructured hybrid material based on highly mismatched III–V nanocrystals fully embedded in silicon // Physica status solidi (a). 2014. V. 211. № 4. P. 817–822. https://doi.org/10.1002/pssa.201330395
18. Chen Q., Zhang L., Song Y. et al. Highly tensilestrained self-assembled Ge quantum dots on InP substrates for integrated light sources // ACS Appl. Nano  Mater. 2021. V. 4. № 1. P. 897–906. https://doi.org/10.1021/acsanm.0c03373
19. Шкляев А.А., Латышев А.В., Ичикава М. Фотолюминесценция в области длин волн 1,5–1,6 мкм слоев кремния с высокой концентрацией кристаллических дефектов // Физика и техника полупроводников. 2010. Т. 44. № 4. С. 452–457. http://doi.org/10.1134/S1063782610040044
 Shklyaev A.A., Latyshev A.V., Ichikawa M. 1.5–1.6 μM photoluminescence of silicon layers with a high density of lattice defects // Semiconductors. 2010. V. 44. № 4. P. 432–437. http://doi.org/10.1134/S1063782610040044
20. Зегря Г.Г, Самосват Д.М. Механизмы оже-рекомбинации в полупроводниковых квантовых точках // Журнал экспериментальной и теоретической физики. 2007. Т. 131. № 6. С. 1090–1106. https://doi.org/10.1134/S1063776107060131
 Zegrya G.G., Samosvat D.M. Mechanisms of Auger recombination in semiconducting quantum dots // Journal of experimental and theoretical physics. 2007. V. 104. № 6. P. 951–965. https://doi.org/10.1134/S1063776107060131