ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-04-3-13

УДК: 535.36

Spin-orbit transformation in a sharp focus

For Russian citation (Opticheskii Zhurnal):

Котляр В.В., Ковалев А.А., Налимов А.Г., Козлова Е.С., Телегин А.М. Спин-орбитальное преобразование в остром фокусе // Оптический журнал. 2025. Т. 92. № 4. С. 3–13. http://doi.org/10.17586/1023-5086-2025-92-04-3-13

 

Kotlyar V.V., Kovalev A.A., Nalimov A.G., Kozlova E.S., Telegin A.M. Spin-orbit transformation in a sharp focus [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 3–13. http://doi.org/10.17586/1023-5086-2025-92-04-3-13

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Laser vector vortex beams and their sharp focusing. Spin-orbit transformation effect at a focus. Aim of study. Theoretical study and numerical simulation of features of a spin-orbit effect at a sharp focus for an optical vortex with circular polarization. Method. The study was carried out using the Richards-Wolf method, which is based on Debye integrals. Main results. The transverse and longitudinal projections of Poynting vectors (energy flow), spin angular momentum, and orbital angular momentum averaged over the beam cross section in the focal plane were obtained. Practical significance. It is shown for the first time that during the spin-orbit transformation, a part of the longitudinal spin angular momentum does not transform (is not transformed) into the longitudinal orbital angular momentum, as it is usually believed. It is shown that the full spin angular momentum is preserved during focusing and is only redistributed: part of the longitudinal component is converted into a transverse (azimuthal) component. The reason for the orbital angular momentum generation at the focus is that a circularly polarized beam generates two optical vortices at the focus: a transverse one with topological charge 2 and a longitudinal one with charge 1. These vortices create an azimuthal energy flow at the focus.

Keywords:

spin angular momentum, spin-orbit transformation, topological charge, orbital angular momentum, Poynting vector

Acknowledgements:

the work was partly supported by the Russian Science Foundation Grant № 23-12-00236 (in part of theory) and within a state contract of the NRC "Kurchatov Institute" (in part of simulation)

OCIS codes: 030.1670

References:

1. Poynting J.H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light // Proc R Soc Lond A. 1909. V. 82. № 557. P. 560–7. https://doi.org/10.1098/rspa.1909.0060
2. Beth R.A. Mechanical detection and measurement of the angular momentum of light // Phys Rev. 1936. V. 50. № 2. P. 115–25. https://doi.org/10.1103/PhysRev. 50.115
3. Allen L., Beijersbergen M.W., Spreeuw R.J.C., Woerdman J.P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes // Phys Rev A. 1992. V. 45. № 11. P. 8185–9. https://doi.org/10.1103/PhysRevA.45.8185
4. Bokor N., Iketaki Y., Watanabe T., Fujii M. Investigation of polarization effects for high-numerical-aperture first-order Laguerre–Gaussian beams by 2D scanning with a single fluorescent microbead // Opt Express. 2005. V. 13. № 26. P. 10440–7. https://doi.org/10.1364/OPEX.13.010440
5. Kotlyar V.V., Kovalev A.A., Telegin A.M. Angular and orbital angular momenta in the tight focus of a circularly polarized optical vortex // Photonics. 2023. V. 10. P. 160. https://doi.org/10.3390/photonics10020160
6. Bomzon Z., Gu M., Shamir J. Angular momentum and geometric phases in tightly-focused circularly polarized plane waves // Appl. Phys. Lett. 2006. V. 89. № 24. P. 241104. https://doi.org/10.1063/1.2402909
7. Richards B., Wolf E. Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system // Proc R Soc A Math Phys Eng Sci. 1959. V. 253. № 1274. P. 358–79.
8. Bomzon Z., Gu M. Space-variant geometrical phases in focused cylindrical light beams // Opt. Lett. 2007. V. 32. № 20. P. 3017–3019. https://doi.org/10.1364/OL.32.003017
9. Zhao Y., Edgar J.S., Jeffries G.D.M., McGloin D., Chiu D.T. Spin-to-orbital angular momentum conversion in a strongly focused optical beam // Phys. Rev. Lett. 2007. V. 99. № 7. P. 073901. https://doi.org/10.1103/PhysRevLett.99.073901
10. Nieminen T.A., Stilgoe A.B., Heckenberg N.R., Rubinsztein-Dunlop H. Angular momentum of a strongly focused Gaussian beam // J. Opt. A. Pure Appl. Opt. 2008. V. 10. № 11. P. 115005. http://doi.org/10.1088/1464-4258/10/11/115005
11. Zhao Y., Shapiro D., McGloin D., Chiu D.T., Marchesini S. Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized Gaussian beam // Opt. Express. 2009. V. 17. № 25. P. 23316–23322. https://doi.org/10.1364/OE.17.023316
12. Gorodetski Y., Niv A., Kleiner V., Hasman E. Observation of the spin-based plasmonic effect in nanoscale structures // Phys. Rev. Lett. 2008. V. 101. № 4. P. 043903

13. Monteiro P.B., Neto P.A.M., Nussenzveig H.M. Angular momentum of focused beams: Beyond the paraxial approximation // Phys. Rev. A. 2009. V. 79. № 3. P. 033830.
14. Rodríguez-Herrera O.G., Lara D., Bliokh K.Y., Ostrovskaya E.A., Dainty C. Optical nanoprobing via spinorbit interaction of light // Phys. Rev. Lett. 2010. V. 104. № 25. P. 253601. https://doi.org/10.1103/PhysRevLett.104.253601
15. Foreman M.R., Török P. Spin-orbit coupling and conservation of angular momentum flux in non-paraxial imaging of forbidden radiation // New J. Phys. 2011. V. 13. № 6. P. 063041. http://doi.org/10.1088/1367-2630/13/6/063041
16. Bliokh K.Y., Ostrovskaya E.A., Alonso M.A., Rodríguez-Herrera O.G., Lara D., Dainty C. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems // Opt. Express. 2011. V. 19. P. 26132–26149. https://doi.org/10.1364/OE.19.026132.
17. Li H., Ma C., Wang J., Tang M., Li X. Spin-orbit Hall effect in the tight focusing of a radially polarized vortex beam // Opt. Express. 2021. V. 29. P. 39419–39427. https://doi.org/10.1364/OE.443271
18. Arzola A.V., Chvátal L., Jákl P. et al. Spin to orbital light momentum conversion visualized by particle trajectory // Sci Rep. 2019. V. 9. P. 4127. https://doi.org/10.1038/s41598-019-40475-z
19. Guo Ji-Xiang, Wang Wen-Yue, Cheng Tian-Yu, Lü Jia-Qi. Interaction of spin-orbit angular momentum in the tight focusing of structured light // Frontiers in Physics. 2022. V. 10. P. 1079265. https://doi.org/10.3389/fphy.2022.1079265
20. Wu Y., Yu P., Liu Y., Wang Z., Li Y., Gong L. Timevarying optical spin-orbit interactions in tight focusing of self-torqued beams // Journal of Lightwave Technology. 2023. V. 41. № 7. P. 2252–2258. https://doi.org/ 10.1109/JLT.2022.3210953
21. Bliokh K.Y., Rodriguez-Fortuno F.J., Nori F., Zayats A.V. Spin-orbit interactions of light // Nature Photon. 2015. V. 9. № 12. P. 796–808. https://doi.org/10.1038/nphoton.2015.201
22. Angelsky O.V., Mokhun I.I., Bekshaev A.Y., Zenkova C.Y., Zheng J., Polarization singularities: Topological and dynamical aspects // Frontiers in Physics. 2023. V. 11. P. 1147788. https://doi.org/10.3389/fphy.2023.1147788
23. Hendriks F., Rojas-Lopez R.R., Koopmans B., Guimarães M.H.D. Electric control of optically-induced magnetization dynamics in a van der Waals ferromagnetic semiconductor // Nat Commun. 2024. V. 15. № 1. P. 1298. https://doi.org/ 10.1038/s41467-024-45623-2
24. Yan W., Hu X., Li Y, Chen R. Energy backflow in tightly focused fractional order vector vortex beams with binary topological charges // Photonics. 2023. V. 10. № 7. P. 820. https://doi.org/10.3390/photonics10070820
25. Wang W., Zhao R., Kang Q., Wang R., Liu X., Liu T., Fan S.W., Guo Z. Photonic spin Hall effect driven broadband multi-focus dielectric metalens // Appl Opt. 2023. V. 62. № 30. P. 8159–8167. https://doi.org/10.1364/AO.502888
26. Shen Y., Zhang Q., Shi P. et al. Optical skyrmions and other topological quasiparticles of light // Nat. Photon. 2024. V. 18. P. 15–25. https://doi.org/10.1038/s41566-023-01325-7
27. Berškys J., Orlov S. Interaction of photonic wheel with cluster of nanoparticles // 2021 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, OSA Technical Digest (Optica Publishing Group, 2021). 2021. Paper eg_p_10.
28. Kotlyar V.V., Stafeev S.S., Zaitsev V.D., Telegin A.M., Kozlova E.S. Spin–orbital transformation in a tight focus of an optical vortex with circular polarization // Appl. Sci. 2023. V. 13. P. 8361. https://doi.org/10.3390/app13148361
29. Kovalev A.A., Kotlyar V.V. Spin Hall effect of doubleindex cylindrical vector beams in a tight focus // Micromachines. 2023. V. 14. № 2. P. 494. https://doi.org/10.3390/mi14020494
30. Ghosh B., Daniel A., Gorzkowski B., Bekshaev A.Y., Lapkiewicz R., Bliokh K.Y. Canonical and Poynting currents in propagation and diffraction of structured light: tutorial // J. Opt. Soc. Am. B. 2024. V. 41. P. 1276–1289. https://doi.org/10.1364/JOSAB.522393