ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-04-32-41

УДК: 535-15

Effective radiation mathematical model of air objects taking into account ascending and descending radiation in a cloudless atmosphere in the infrared wavelength range

For Russian citation (Opticheskii Zhurnal):

Нестеров М.С., Афанасьева Е.М., Лопин В.И. Математическая модель эффективного излучения воздушных объектов с учётом восходящего и нисходящего излучений в безоблачной атмосфере в инфракрасном диапазоне длин волн // Оптический журнал. 2025. Т. 92. № 4. С. 32–41. http://doi.org/10.17586/1023-5086-2025-92-04-32-41

 

Nesterov M.S., Afanasieva E.M., Lopin V.I. Effective radiation mathematical model of air objects taking into account ascending and descending radiation in a cloudless atmosphere in the infrared wavelength range [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 32–41. http://doi.org/10.17586/1023-5086-2025-92-04-32-41

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Effective radiation Formation from air objects as a result of complex heat exchange on the surface and transfer of radiation from the atmosphere, the Sun and the earth's surface in the wavelength ranges from 3 to 5 microns and from 8 to 14 microns. Aim of study. Development of effective radiation mathematical model of the of air objects in the wavelength ranges from 3 to 5 microns and from 8 to 14 microns, based on the solution of a three-dimensional problem of complex heat transfer on a surface using the finite volume method using the ANSYS software environment and allowing to take into account the ascending and descending flows of solar radiation and thermal radiation of the cloudless atmosphere. Method. Finding the energy characteristics of effective radiation (own and reflected) of air objects as a result of solving the three-dimensional problem of complex heat exchange on the surface by the finite volume method using the ANSYS software medium and solving the equation of radiation transfer in a cloudless atmosphere in the wavelength range from 3 to 5 microns and from 8 to 14 microns due to the representation of the atmosphere in the form of layers, each of which is characterized by a constant temperature, concentration of water vapors and carbon dioxide. Main results. Effective radiation mathematical model of air objects has been developed, which allows calculating the objects radiation characteristics and taking into account the parameters of objects: the power of internal sources, optical and thermophysical properties of the surface, the object geometry, as well as taking into account the influence of variability of radiation of the atmosphere, the Earth's surface and the Sun at different altitudes during the day and at different times of the year. The maximum deviation of the effective radiation brightness calculated from the simulation results from the effective radiation brightness calculated from the experimental results was 15%. Practical significance. The results obtained in the work can be used to assess the optical visibility of objects, as well as to assess the effectiveness of monitoring tools for airspace, the earth's surface in the infrared wavelength range.

Keywords:

air objects, infrared radiation, modeling of complex heat transfer, radiation transfer in the atmosphere

Acknowledgements:

scientific staff of the Military Educational and Scientific Centre of the Air Force N. E. Zhukovsky and Y. A. Gagarin Air Force Academy, Voronezh

OCIS codes: 260.3060, 260.3090, 280.6780, 010.1320, 010.1300

References:

1. Кульчицкий Н.А., Наумов А.В., Старцев В.В. Матричные фотоприемные устройства ИК диапазона: «постпандемические» тенденции развития. Часть II // Фотоника. 2020. Т. 14. № 4. С. 320–330. https://doi.org/10.22184/1993-7296.FRos.2020.14.4.320.330
 Kulchitsky N.A., Naumov A.V., Startsev V.V. Matrix photodetectors of the IR range: "post-pandemic" development trends. Part II // Photonics. 2020. V. 14. № 4. P. 320–330. https://doi.org/10.22184/1993-7296.FRos. 2020.14.4.320.330
2. Балоев B.A., Ильин Г.И., Овсянников B.A., Филиппов B.Л. Эффективность, помехозащищённость и помехоустойчивость видовых оптико-электронных систем. Монография. Казань: Изд-во Казан. гос. техн. ун-та, 2015. 424 c.
 Baloev B.A., Ilyin G.I., Ovsyannikov B.A., Filippov B.L. Efficiency, noise immunity and noise immunity of specific optoelectronic systems [in Russian]. Monograph. Kazan: Publishing house of Kazan State Technical University, 2015. 424 p.
3. Pohl A., Paulley Y., Smith A., Gustafsson O., Möller S., Allvar J.. The impact of exhaust plumes on the infrared signature of combat vehicles — an experimental and analytical study // Journal of Quantitative Spectroscopy and Radiative Transfer. 2023. V. 306. P. 108649. https://doi.org/10.1016/j.jqsrt.2023. 108649
4. Yakunin M.A. A hybrid method for evaluating absorbed solar energy at the surface level using remote sensing data // Journal of Siberian Federal University. Mathematics & Physics. 2015. V. 8(2). P. 224–229.
5. Темам Р. Уравнения Навье–Стокса. Теория и численный анализ / Пер. с англ. В.А. Новикова, А.М. Франка. М.: Мир, 1981. 404 с.
 Temam R. Navier–Stokes equations: theory and numerical analysis. North-Holland, Amsterdam and New York: AMS Chelsea Publishing, 1977. 454 p.
6. Тарасов В.В., Якушенков Ю.Г. Инфракрасные системы смотрящего типа. М.: Логос, 2004. 444 с.
 Tarasov V.V., Yakushenkov Yu.G. Infrared systems of the viewing type [in Russian]. Moscow: Logos, 2004. 444 p.
7. Шумов А.В., Султангулова А.И. Моделирование инфракрасного излучения лимба Земли // Вестник концерна ВКО «Алмаз – Антей». 2017. Т. 4. C. 53–62. https://doi.org/10.38013/2542-0542-2017-4-53-62
 Shumov A.V., Sultangulova A.I. Modeling of Earth's limb infrared radiation // Journal of «Almaz – Antey» Air and Space Defence Corporation. 2017. V. 4. P. 53–62. https://doi.org/10.38013/2542-0542-2017-4-53-62
8. Dubuisson P., Giraud V., Chomette O., Chepfer H., Pelon J. Fast radiative transfer modeling for infrared imaging radiometry // Journal of Quantitative Spectroscopy and Radiative Transfer. 2005. V. 95. № 2. P. 201–220. https://doi.org/10.1016/j.jqsrt.2004.09.034
9. Креков Г.М., Орлов В.М., Белов В.В. и др. Имитационное моделирование в задачах оптического дистанционного зондирования. Монография. Новосибирск: Наука, Сиб. отд-ние, 1988. 165 с.
 Krekov G.M., Orlov V.M., Belov V.V. et al. Simulation modeling in optical remote sensing problems [in Russian] Monograph. Novosibirsk: Nauka, Siberian Branch, 1988. 165 p.
10. Kratz P., Mlynczak G., Mertens J., Brindley H., Gordley L., Martin-Torres J., Miskolczi F., Turner D. An intercomparison of far-infrared line-by-line radiative transfer models // Journal of Quantitative Spectroscopy and Radiative Transfer. 2005. V. 90. № 3–4. P. 323–341. https://doi.org/10.1016/j.jqsrt.2004.04.006

11. Han Lin, Kun Wu, Wenwen Li Comparisons of radiative transfer schemes for infrared spectra and the region with solar and infrared spectra overlap in RRTMG // Journal of Quantitative Spectroscopy and Radiative Transfer. 2020. V. 244. P. 106846. https://doi.org/10.1016/j.jqsrt.2020.106846
12. Афонин А.В., Ньюпорт Р.К., Поляков В.С. и др. Основы инфракрасной термографии / Под ред. Р.К. Ньюпорта, А.И. Таджибекова. СПб.: Изд. ПЭИПК, 2004. 240 с.
 Afonin, A.V., Newport R.K., Polyakov V.S. et al. Basics of infrared thermography [in Russian] / Ed. R.K. Newport, A.I. Tajibekov. SPb: Publishing house of PEIPK, 2004. 240 p.
13. Нестеров М.С. Оценка показателей инфракрасной заметности летательных аппаратов по данным расчета методом конечных элементов трехмерного распределения температур по поверхности // Свид. 2021666814. Российская Федерация. Свидетельство о государственной регистрации для ЭВМ № 2021666143; заявл. 04.10.21; опубл. 20.10.21. Реестр программ для ЭВМ. 1 с.
 Nesterov M.S. Evaluation of indicators of infrared visibility of aircraft according to the calculation data by the finite element method of three-dimensional temperature distribution over the surface // Certificate 2021666814. Russian Federation. Certificate of state registration for computers № 2021666143. 1 p.
14. Fernandes E.J., Krishanmurthy S.H. Design and analysis of shell and tube heat exchanger // International Journal for Simulation and Multidisciplinary Design Optimization. 2022. V. 13. № 0. P. 15–23. https://doi.org/10.1051/smdo/2022005
15. Rimár M., Kulikov A., Fedak M., Abraham M. CFD analysis of the ventilation heating system // Mechanics & Industry. 2020. V. 20. № 7. P. 708–714. https://doi.org/10.1051/meca/2020020
16. Chatain S., Gonella C. Heat transfer by conduction and radiation in building materials: review and new developments // Metallurgical Research & Technology. 1998. V. 95. № 9. P. 1149–1156. https://doi.org/10.1051/metal/199895091149.