ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-04-42-49

УДК: 531.742: 62.791

Experimental study of the error of a matrix displacement meter

For Russian citation (Opticheskii Zhurnal):

Королев А.Н., Лукин А.Я., Филатов Ю.В. Экспериментальное исследование погрешности матричного измерителя перемещений // Оптический журнал. 2025. Т. 92. № 4. С. 42–49. http://doi.org/10.17586/1023-5086-2025-92-04-42-49

 

Korolev A.N., Lukin A.Ya., Filatov Yu.V. Experimental study of the error of a matrix displacement meter [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 42–49. http://doi.org/10.17586/1023-5086-2025-92-04-42-49

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. This paper presents the results of a study of linear-angular measurement technology based on the use of a multi-element 2D mark and a video camera. Aim of study. The objective of the research was to experimentally confirm the predicted random error of matrix displacement meters at the level of units of nanometers. Method. Measurements of linear displacements were carried out by cross-calibration on a two-channel stand with two identical matrix displacement meters with a common linear translator. 1.3 Megapixel CMOS digital cameras were used as an image analyzer. Main results. The difference in the measurement results in both channels made it possible to determine the total random error of the meters. At this stage, it is concluded that the random error of the studied matrix meters does not exceed 2 nm. This result was obtained for the first time with a displacement range of 4 mm. Practical significance. It is shown that when implementing the procedures of matrix measurement technology, it is possible to obtain a random measurement error of several nanometers.

Keywords:

matrix measurement technology, matrix meter, measuring mark, video camera

Acknowledgements:

the authors are grateful for the financial support within the framework of the RSF grant № 20-19-00412

OCIS codes: 120.0120, 230.0230

References:

1. Pisani M., Yacoot A., Balling P., Bancone N., Birlikseven C., Çelik M., Flügge J., Weichert C. Comparison of the performance of the next generation of optical interferometers // Metrologia. 2012. V. 49. № 4. P. 455–467. https://doi.org/ 10.1088/0026-1394/49/4/455
2. Peggs G.N., Yacoot A. A review of recent work in subnanometre displacement measurement using optical and X-ray interferometer // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2002. V. 360. № 1794. P. 953–968. https://doi.org/10.1098/rsta.2001.0976
3. Hsu C.-C., Chen H., Chiang C.-W., Chang Y.-W. Dual displacement resolution encoder by integrating single holographic grating sensor and heterodyne interferometry // Opt. Express. 2017. V. 25. № 24. P. 30189–30202. https://doi.org/10.1364/OE.25.030189
4. Feng C., Zeng L., Wang S. Heterodyne planar grating encoder with high alignment tolerance, especially insensitivity to grating tilts // Proceedings of Eighth International Symposium on Precision Engineering Measurement and Instrumentation / Ed by Lin J. / International Society for Optics and Photonics (SPIE). 2013. V. 8759 P. 890–897. https://doi.org/10.1117/12.2012649
5. Zhou B., Jia W., Sun P., Wang J., Liu W., Zhou C. Polarization-independent high diffraction efficiency twodimensional grating based on cylindrical hole nano arrays // Opt. Express. 2020. V. 28. № 20. P. 28810–28818. https://doi.org/10.1364/OE.402131
6. Chen H., Jiang B., Shi Z. Synthetic model of nonlinearity errors in laser heterodyne interferometry // Appl. Opt. 2018. V. 57. № 14. P. 3890–3901. https://doi.org/10.1364/AO.57.003890
7. Bridges A., Yacoot A., Kissinger T., Humphreys D.A., Tatam R.P. Correction of periodic displacement nonlinearities by two-wavelength interferometry // Measurement Science and Technology. 2021. V. 32. № 12. P. 125202. https://doi.org/10.1088/1361-6501/ac1dfa
8. Qilin Zeng, Zhengyi Zhao, Hao Du, Xianming Xiong, Wentao Zhang, Peng Wang, Zhicheng Zhang, Yunfeng Guo. Separation and compensation of nonlinear errors in sub-nanometer grating interferometers // Optics Express. 2022. V. 30. № 26. P. 46259–46279. https://doi.org/10.1364/OE.471714
9. Bridges A., Yacoot A., Kissinger T., Tatam R.P. Multiple intensity reference interferometry for the correction of sub-fringe displacement non-linearities // Measurement Science and Technology. 2022. V. 33. № 2. P. 025201. https://doi.org/10.1088/1361-6501/ac3aad
10. Lashmanov O.U., Vasilev A., Vasileva A., Korotaev V.V. High-precision absolute linear encoder based on a standard calibrated scale // Measurement. 2018. V. 123. № 3. P. 226–234. https://doi.org/10.1016/j.measurement. 2018.03.071
11. Wentao Zhang, Wang Yulin, Hao Du, Qilin Zeng, Xianming Xiong. High-precision displacement measurement model for the grating interferometer system // Optical Engineering. 2020. V. 59. № 4. P. 045101. https://doi.org/10.1117/1.OE.59.4.045101
12. Cheng F., Zhou D., Yu Q., Tjahjowidodo T. New image grating sensor for linear displacement measurement and its error analysis // Sensors. 2022. V. 22. № 12. P. 4361. https://doi.org/10.3390/s22124361
13. André N., Sandoz P., Mauzé B., Jacquot M., Laurent G.J. Robust phase-based decoding for absolute (X, Y, Θ) positioning by vision // IEEE Transactions on Instrumentation and Measurement. 2021. V. 70. P. 1–12. https://doi.org/10.1109/TIM.2020.3009353
14. Королев А.Н., Лукин А.Я., Полищук Г.С. Новая концепция измерения угла. Модельные и экспериментальные исследования // Оптический журнал. 2012. Т. 79. № 6. С. 52–58.
 Korolev A.N., Lukin A.Ya., Polishchuk G.S. New concept of angular measurement. Model and experimental studies // Journal of Optical Technology. 2012. V. 79. № 6. P. 352–356. https://doi.org/10.1364/JOT.79.000352

15. Королев А.Н., Лукин А.Я., Филатов Ю.В., Венедиктов В.Ю. Матричная технология линейно-угловых измерений // Оптический журнал. 2022. Т. 89. № 12. С. 54–64. https://doi.org/10.17586/1023-5086-2022-89-12-54-64
 Korolev A.N., Lukin A.Ya., Filatov Yu.V., Venediktov V.Yu. Matrix technology of linear-angular measurements // Journal of Optical Technology. 2022. V. 89. № 12. P. 733–739. https://doi.org/10.1364/JOT.89.000733
16. Королев А.Н., Лукин А.Я., Филатов Ю.В. Матричная технология измерений. Точность измерения координат элементов и контроль фотошаблонов // Оптический журнал. 2024. Т. 91. № 3. С. 115–123. http://doi.org/10.17586/1023-5086-2024-91-03-115-123
 Korolev A.N., Lukin A.Ya., Filatov Yu.V., Venediktov V.Yu. Matrix measurement technology: accuracy of measuring element coordinates and photomask control // Journal of Optical Technology. 2024. V. 91(3). P. 203–208. https://doi.org/10.1364/JOT.91.000203
17. Korolev A.N., Lukin A.Ya., Filatov Y.V., Venediktov V.Y. Reconstruction of the image metric of periodic structures in an opto-digital angle measurement system // Sensors. 2021. V. 21. P. 4411. https://doi.org/10.3390/s21134411
18. Archer O., Nguyen T.-H. Turning a machine vision camera into a high precision position and angle encoder: nanoGPS-OxyO // Proc. SPIE. 2019. V. 11056. P. 110562O. https://doi.org/10.1117/12.2524938
19. Pisani M., Astrua M., Carles P.-A., Kubsky S., Nguyˆen T.-L., Acher O. Characterization of angle accuracy and precision of 3-degree-of-freedom absolute encoder based on NanoGPS OxyO technology // Sensors. 2020. V. 20. P. 3462. https://doi.org/10.3390/s20123462
20. André A.N., Sandoz P., Mauzé B., Jacquot M., Laurent G.J. Sensing one nanometer over ten centimeters: a micro-encoded target for visual in-plane position measurement // IEEE/ASME Trans. Mechatronics. 2020. V. 25. № 3. P. 1193–1201. https://doi.org/10.1109/TMECH.2020.2965211
21. Aras R., Dallas J., Heaps E., Varga L., Yacoot A. Validation of MAPS: a novel 6-degree-of-freedom position sensor for nanopositioning // Meas. Sci. Technol. 2024. V. 35. P. 105016. https://doi.org/10.1088/1361-6501/ad5c92