DOI: 10.17586/1023-5086-2025-92-04-50-59
УДК: 681.787
Theoretical and experimental dynamic range estimation of the coherent optical time-domain reflectometer
Ушанов С.А., Плотников М.Ю., Волков А.В., Мухтубаев А.Б., Гончаров Д.Б., Карпов Е.Е., Сандровский А.А. Теоретическая и экспериментальная оценка динамического диапазона когерентного оптического рефлектометра // Оптический журнал. 2025. Т. 92. № 4. С. 50–59. http://doi.org/10.17586/1023-5086-2025-92-04-50-59
Ushanov S.A., Plotnikov M.Y., Volkov A.V., Mukhtubaev A.B., Goncharov D.B., Karpov E.E., Sandrovsky A.A. Theoretical and experimental dynamic range estimation of the coherent optical time-domain reflectometer [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 50–59. http://doi.org/10.17586/1023-5086-2025-92-04-50-59
Subject of study. The paper presents an original method for calculating the dynamic range of a coherent reflectometer, which makes it possible to estimate the maximum theoretical range of its operation, taking into account the influence of the power level of the local oscillator and the noise level of the selected balanced photodetector. Aim of study. The dependence evaluation of the dynamic range of a coherent reflectometer on the optical power of a local oscillator at a given noise level of a balanced photodetector and its limitations in real circuits. Method. The dynamic range was calculated for two cases: for a given power of the local oscillator optical signal and for the ideal theoretical maximum sensitivity of the balanced photodetector. The results of calculations were verified on a working scheme of a coherent optical reflectometer, the parameters of which were used during calculations. Main results. The dependence of the dynamic range of the coherent reflectometer on the local oscillator power was determined. The maximum value of the dynamic range was 35.4 dB for a pulse duration of 3 μs, an output optical power of 10 dBm, losses in the reflectometer scheme of 11.5 dB and a number of averaged reflectograms of 215 at a local oscillator power of 225.9 μW. Both excess and lack of the optical power of the local oscillator signal lead to a decrease in the dynamic range of the coherent reflectometer. Practical significance. The use of the proposed calculation method allows to design coherent reflectometers with a given dynamic range and operating range, as well as to determine the potential for its possible increase.
coherent reflectometer, optical reflectometry, interferometric measurements, local oscillator
Acknowledgements:the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Project № FSER-2024-0006)
OCIS codes: 060.0060, 230.0230, 250.0250
References:1. Chesnoy J. (ed.). Undersea fiber communication systems. Oxford: Academic press, 2016. 669 p.
2. Веретенников Н.П., Леонтьев Р.Г. Арктика РФ: транспортная и телекоммуникационная инфраструктура, экономика и безопасность страны // Национальная ассоциация ученых. 2021. № 71-2. С. 29–37. https://doi.org/10.31618/nas.2413-5291.2021.2.71.479
Veretennikov N.P., Leontiev R.G. The Arctic: The transport and telecommunication of infrastructure, the economy, national security // National Association of Scientists. 2021. V. 71-2. P. 29–37. https://doi.org/10.31618/nas.2413-5291.2021.2.71.479
3. Troubleshooting optical fiber networks: understanding and using optical time-domain reflectometers / Anderson D.R., Johnson L.M., Bell F.G; Elsevier academic press - San Diego, 2004. 172 p. ISBN 0-12-0586614
4. An introduction to distributed optical fibre sensors / Hartog A.H.; CRC press — Boka Raton, 2017. 472 p. ISBN 9781138082694
5. Zhang Chao, Fumihiko Ito. Recent progress of fiber diagnostic technologies for optical fiber networks: distributed fiber sensing and fiber characterization // Metro and Data Center Optical Networks and ShortReach Links. 2022. V. 12027. P. 89–104. https://doi.org/10.1117/12.2607242
6. Gautheron O., Leroy J.B., Marmier P. COTDR performance optimization for amplified transmission systems // IEEE Photonics Technology Letters. 1997. V. 9(7). P. 1041–1043. https://doi.org/10.1109/68.593393
7. Hiroyuki I., Kunihiro T., Fumihiko I. Frequency-division-multiplexing Coherent OTDR for realizing effective construction and maintenance of submarine optical cable systems // NTT Technical Review. 2014. V. 12(10). P. 47–53. https://doi.org/10.53829/ntr201410ra1
8. Листвин А.В. Рефлектометрия оптических волокон / Под ред. Листвин А.В., Листвин В.Н. Москва: ЛЕСАРарт, 2005. 208 с.
Listvin A.V. Reflectometry of optical fibers / Ed. by Listvin A.V., Listvin V.N. Moscow: Lesrart, 2005. 208 p.
9. Izumita Hisashi. Highly developed coherent detection OTDR technology and its applications to optical fiber networks monitoring // PhD diss. Tokyo: Waseda University, 2008. 210 p.
10. Holmes J.F., Rask B.J. Optimum optical local-oscillator power levels for coherent detection with photodiodes // Applied optics. 1995. V. 34(6). P. 927–933. https://doi.org/10.1364/AO.34.000927
11. Li Y.C., Gao L., Cong H.F., Qu Y., Gao J., Wang A.Y., Wang C.H. Optimum optical local oscillator power levels impact on signal-to-noise ratio in heterodyne // In 2010 Symposium on Photonics and Optoelectronics. 2010. P. 1–3. https://doi.org/10.1109/SOPO.2010.5504186
12. Lu Q., Shen Q., Cao Y., Liao S., Peng C. Ultra-low-noise balanced detectors for optical time-domain measurements // IEEE Transactions on Nuclear Science. 2018. V. 66(7). P. 1048–1055. https://doi.org/10.1109/TNS. 2018.2885364
13. Mackowiak Verena, Jens Peupelmann, Yi Ma, Anthony Gorges. NEP-noise equivalent power // Thorlabs, 2015. URL: https://www.thorlabs.com/newgrouppage9.cfm? objectgroup_id=9020
14. Arvizu A., Mendieta F.J., Chavez R. Balanced photoreceiver for coherent optical communications // Instrumentation and Development. 1998. V. 3(10). P. 3–14.
15. Yang W., Yang Y., Yang M. Fast digital envelope detector based on generalized harmonic wavelet transform for BOTDR performance improvement // Measurement Science and Technology. 2014. V. 25(6). P. 065103. https://doi.org/10.1088/0957-0233/25/6/065103
16. Liokumovich L.B., Ushakov N.A., Kotov O.I., Bisyarin M.A., Hartog A.H. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: Signal model under static fiber conditions // Journal of Lightwave Technology. 2015. V. 33(17). P. 3660–3671. https://doi.org/10.1109/JLT.2015.2449085
17. Healey P. Instrumentation principles for optical time domain reflectometry // Journal of Physics E: Scientific Instruments. 1986. V. 19(5). P. 334. https://doi.org/10.1088/0022-3735/19/5/002