DOI: 10.17586/1023-5086-2025-92-04-71-81
УДК: 535.317
Design of dual-channel panoramic optical system for car vehicle vision
Цыганок Е.А., Кожина А.Д., Чжан Хени, Тришина Д.Д. Проектирование двухканальной панорамной оптической системы для машинного зрения автомобилей // Оптический журнал. 2025. Т. 92. № 4. С. 71–81. http://doi.org/10.17586/1023-5086-2025-92-04-71-81
Tsyganok E.A., Kozhina A.D., Zhang Hengyi, Trishina D.D. Design of dual-band panoramic optical system for car vehicle vision [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 71–81. http://doi.org/10.17586/1023-5086-2025-92-04-71-81
The subject of study. Mirror-lens dual-channel optical circular vision systems that are capable of operating as car vehicle vision in both daytime and twilight modes. Purpose of work. Catadioptric optical systems investigation and design of combined two-channel circular vision lens with ultrawide angular field of view in visible and infrared spectral ranges to increase the level of driving vehiclessafety. Method. The angular field of view division into two optical channels with a single image receiver in each of the spectral ranges, as well as the use of a constructively complex mirrorlens component, allow to expand the aberrations correction of the whole system, when working with hyperlarge angular fields, and effectively minimize the influence of distortion, field of view curvature and astigmatism on the image quality formed on the matrix. General results. An analysis of optical systems with similar optical characteristics designed for use in machine vision for vehicles in daytime and twilight modes was conducted. It was concluded that wide-angle systems have several synonymous disadvantages, namely, low resolution at the edge of the field of view, and the working range of most optical systems is limited to the visible spectrum. Therefore, the technical specifications of the device do not allow for operation in twilight and nighttime modes. Based on the research, an optical system of a two-channel panoramic lens for vehicle machine vision was developed. The principles of designing a panoramic visualization system are demonstrated, and a diagram of a two-channel panoramic lens for an extended spectral range of operation is presented. Practical significance. The results obtained from the research, as well as the electronic model of the circular view panoramic lens developed in CAE Zemax, can serve as a prototype for an optical system for daytime and twilight modes of operation with improved optical characteristics compared to existing analog systems.
two-channel optical system, panoramic lens, catadioptric objective, visible and infrared range
OCIS codes: 220.3620; 150.015; 5080.3620; 080.2740
References:1. Shu-Wei Yang, Kuang-Lung Huang, Rong-Seng Chang. Design of fisheye lens // Mathematics in Imaging. 2016. P. 25–28.
2. Цуканова Г.И., Бахолдин А.В. Оптические системы крупногабаритных многоспектральных телескопов // Оптический журнал. 2013. Т. 80. № 12. С. 37–41.
Tsukanova G.I., Bakholdin A.V. The optical systems of large multispectral telescopes // J. Opt. Technol. 2013. V. 80. P. 745–748. https://doi.org/10.1364/JOT.80.000745
3. Архипова Л.Н., Багдасаров А.А., Багдасарова О.В., Шевченко Д.Н. Панорамные системы кругового обзора // Оптический журнал. 2016. Т. 83. № 6. С. 20–31.
Arkhipova L.N., Bagdasarov A.A., Bagdasarova O.V., Shevchenko D.N. Circular-scan panoramic systems // J. Opt. Technol. 2016. V. 83. P. 342–350. •https://doi.org/10.1364/JOT.83.000342
4. Hui D., Zhang M., Geng Z. et al. Designs for high performance PAL-based imaging systems // Appl. Opt. 2012. V. 51(21). P. 5310–5317.
5. Huang Z., Bai J., Hou X.Y. Design of panoramic stereo imaging with single optical system // Opt. Express. 2012. V. 20(6). P. 6085–6096.
6. Gong C., Cheng D.W., Xu C.et al. Design of a novel panoramic lens without central blindness // Proc. SPIE. 2015. P. 9618-9618-16.
7. Заварзин В.И., Кравченко С.О., Митрофанова Ю.С. Выбор оптических материалов для минимизации хроматизма положения в перспективной широкозахватной многоспектральной аппаратуре среднего разрешения // Оптический журнал. 2016. Т. 83. № 10. С. 16–23.
Zavarzin V.I., Kravchenko S.O., Mitrofanova Yu.S. Selection of optical materials to minimize longitudinal chromatic aberration in a prospective broad-coverage medium-resolution multispectral instrument // J. Opt. Technol. 2016. V. 83. P. 593–598. https://doi.org/10.1364/JOT.83.000593
8. Kozhina A., Soshnicova E., Uvarova A. Optical design of a dual channel microscope // CEUR Workshop Proceedings. 2020. V. 2744. P. 1–7.
9. Wang J.H., Liang Y.C., Xu M. Design of panoramic lens based on ogive and aspheric surface // Opt. Express. 2015. V. 23(15). P. 19489–19499.
10. Nagahara H., YagiY. Lens less imaging for wide field of view // Opt. Express. 2015. V. 54(2). P. 25114.
11. Butylkina K.D., Romanova G.E., Vasil'ev V.N., Valyavin G. Investigation of three-mirror objectives for Earth remote sensing operating with an off-axis field of view // Journal of Optical Technology. 2021. V. 88. № 9. P. 497–502. https://doi.org/10.1364/JOT.88.000497
12. Romanova G.E., Butylkina K.D., Vasilev V.N. Study of higher order aberrations of an on-axis three-mirror telescope with an off-axis field of view // Proceedings of SPIE. 2020. V. 11445. P. 1144537.