DOI: 10.17586/1023-5086-2025-92-04-82-92
УДК: 681.78; 681.7.03
Selection of liquid parameters for chromaticity correction in liquid lenses
Войтов А.С., Егоренко М.П., Ефремов В.С. Выбор параметров жидкостей для коррекции хроматизма в жидкостных объективах // Оптический журнал. 2025. Т. 92. № 4. С. 82–92. http://doi.org/10.17586/1023-5086-2025-92-04-82-92
Voytov A.S., Egorenko M.P., Efremov V.S. Selection of liquid parameters for chromaticity correction in liquid lenses [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 4. P. 82–92. http://doi.org/10.17586/1023-5086-2025-92-04-82-92
Subject of study. Liquid parameters of a liquid doublet lens with variable focal length. Aim of study. To establish the relationship between the Abbe dispersion coefficients (νD) and the refractive indices (nD) of liquids forming a liquid lens, providing an achromatic type of correction of the chromatic position (Δs′) of a liquid lens. Method. Computer simulation of liquid doublets with different values of nD and νD and assessment of their effect on the change in chromaticisms of position (Δs′) and magnification (Δy′). Main results. The requirements for the choice of a combination of optical liquids for which a higher nD value corresponds to a higher νD value and, accordingly, liquids with a lower nD value have a lower νD value are determined. The achromatic type of correction Δs′ is obtained with its values at two points equal to zero. The difference in the values of the dispersion coefficients of liquids should not exceed 10–15 units. The difference in the nD values of liquids should be the maximum to ensure a larger radius of curvature of the membrane, which reduces the monochromatic aberrations of the liquid doublet and allows to increase its relative aperture. Practical significance. The results of the study of the properties of the liquids forming the doublet make it possible to calculate liquid components with the achromatic type of correction Δs′ as independent lenses of telescopic systems, and as components of more complex optical devices.
liquid doublet lens, refractive index (nD), Abbe dispersion coefficient (νD), position chromaticism (Δs′), magnification chromaticism (Δy′)
OCIS codes: 160.3710, 230.3720, 120.3620, 120.4820, 220.3620, 220.4830, 100.2960, 100.2980, 110.2960, 110.3000
References:1. Ньютон И. Лекции по оптике. М.: АН СССР, 1946. 298 с.
Newton I. Lectures on optics [in Russian]. M.: Publishing House of the USSR Academy of Sciences, 1946. 298 p.
2. Гуриков В.А. Эрнст Аббе. М.: Наука, 1985. 228 с.
Gurikov V.A. Ernst Abbe [in Russian]. M.: Nauka, 1985. 228 p.
3. Cheng Y., Cao J., Tang X., Hao Q. Optical zoom imaging systems using adaptive liquid lenses // Bioinspiration & Biomimetics. 2021. V. 16. № 4. P. 041002. https://doi.org/10.1088/1748-3190/abfc2b
4. Merlo S., Crisà E., Giusti D., Ferrera M., Soldo M. Characterization of tunable micro-lenses with a versatile optical measuring system // Sensors. 2018. V. 18. № 12. P. 4396. https://doi.org/10.3390/s18124396
5. Kawamura M. Tunable liquid crystal lenses and their applications // Journal of Photopolymer Science and Technology. 2019. V. 32. № 4. P. 559–562. https://doi.org/10.2494/photopolymer.32.559
6. Lin Y.H. Liquid crystal lenses with tunable focal length // Liquid Crystals Reviews. / Ed. by Lin Y.H., Wang Y.J., Reshetnyak V. 2017. V. 5. № 2. P. 111–143. https://doi.org/10.1080/21680396.2018.1440256
7. Malyuk A., Ivanova N. Biomimetic liquid lenses actuated by a laser beam: effects of evaporation and orientation to gravity // Molecular Systems Design And Engineering. 2020. V. 5. № 7. P. 1290–1298. https://doi.org/10.1039/d0me00052c
8. Bobkova V., Otte E., Denz C., Trinschek S. Analyzing light-structuring features of droplet lenses on liquidrepelling surfaces // Optics Express. 2022. V. 30. № 4. P. 5937–5952. https://doi.org/10.1364/oe.444777
9. Lin Yi.H., Cheng W.Ch., Reshetnyak V., Huang H.H., Huang T.W., Cheng Ch.Ch., Wu Yu.H., Yang Ch.L. Electrically tunable gradient-index lenses via liquid crystals: beyond the power law // Optics Express. 2023. V. 31. № 23. P. 37843. https://doi.org/10.1364/oe.504586
10. Kawamura M. Tunable liquid crystal lenses and their applications // Journal of Photopolymer Science and Technology. 2019. V. 32. № 4. P. 559–562. https://doi.org/10.2494/photopolymer.32.559
11. Reichelt S., Zappe H. Design of spherically corrected, achromatic variable-focus liquid lenses // Optics Express. 2007. V. 15. № 21. P. 14146–14154. https://doi.org/10.1364/OE.15.014146
12. Войтов А.С., Егоренко М.П., Ефремов В.С. Двухдиапазонный жидкостный вариообъектив на основе эффекта электросмачивания // Патент РФ № RU2802534.2023.
Voytov A.S., Egorenko M.P., Efremov V.S. Dual-range liquid varifocal lens based on the electrowetting effect // RF Patent № RU2802534. 2023.
13. Войтов А.С., Егоренко М.П., Ефремов В.С. Жидкостный вариообъектив, управляемый электромагнитным устройством // Патент РФ № RU2826524. 2024.
Voytov A.S., Egorenko M.P., Efremov V.S. A liquid varioobject controlled by an electromagnetic device // RF Patent № RU2826524. 2024.
14. Gaetan Liogier D'Ardhuy, Amiot F., Malet G. Multiphase liquid composition and optical electrowetting device that incorporates the same // US Patent 7 780 874 B2. 2006. Publ. Aug. 24, 2010.
15. Слюсарев Г.Г. Геометрическая оптика. Изд. 2-е. М.: Ленанд, 2019. 336 с.
Slyusarev G.G. Geometric optics. Part two [in Russian]. M.: Lenand, 2019. 336 p.
16. Слюсарев Г.Г. Расчет оптических систем. Л.: Машиностроение, 1975. 639 с.
Slyusarev G.G. Calculation of optical systems [in Russian]. L.: Mechanical engineering, 1975. 639 p.
17. Русинов М.М. Техническая оптика. М.: Либроком, 2021. 488 с.
Rusinov M.M. Technical optics [in Russian]. M.: Librocom, 2021. 488 p.
18. Андреев Л.Н., Ежова В.В. Прикладная теория аберраций. Часть первая. СПб.: Университет ИТМО, 2020. 103 с.
Andreev L.N., Ezhova V.V. Applied theory of aberrations. Part one [in Russian]. St. Petersburg: ITMO University, 2020. 103 p.
19. Электронный ресурс URL: https://www.cargille.com (Cargille Laboratories)
Electronic resource URL: https://www.cargille.com (Cargille Laboratories)
20. Электронный ресурс URL: https://refractiveindex. info/?shelf=main&book=Ge&page=Li-293K (Refractiveindex.info)
Electronic resource URL: https://refractiveindex. info/?shelf=main&book=Ge&page=Li-293K (Refractiveindex.info)