DOI: 10.17586/1023-5086-2025-92-05-3-11
УДК: 535.42
Optical spatial filters for controlling the extracted object contours width
Khorin P.A., Ivliev N.A., Khonina S.N. Optical spatial filters for controlling the extracted object contours width [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 3–11. http://doi.org/10.17586/1023-5086-2025-92-05-3-11
Subject of study. Optical spatial filters based on the Fourier correlator scheme for controlling the width of the extracted object’s image contours. Aim of study. Analyzing the influence of light modes on the properties of an object's image contour extraction and, accordingly, the possibility of recognizing and identifying an object. Method. A numerical simulation of the Fourier correlator with a multichannel spatial filter matched with the Gauss–Laguerre modes and Zernike polynomials is performed. The multichannel filter allows to simultaneously generate several transformed images (with extracted contours of different widths) of one object under study to be formed simultaneously in one plane. Main results. The research results show that it is possible to use a set of Gauss–Laguerre and Zernike polynomials modes as spatial filters to control the width of the extracted an object's image contours. Practical significance. We can talk about the potential improvement of object visualization and recognition in machine vision tasks, including in real time. It is worth noting that the multichannel optical element forms transformed images in different diffraction orders in one focal plane, which is an advantage for static (without replacing or rebuilding the filter) dataset formation.
spatial filters, multichannel diffraction optics, edge extraction, Laguerre–Gaussian modes, Zernike polynomials
Acknowledgements:this study was supported by the state assignment for scientific research to Samara University (project FSSS-2024-0014) in the part of numerical simulation and by the grant of the Russian Science Foundation № 24-79-10101 in the theoretical part.
OCIS codes: 050.1970, 260.1960
References:1. Stark H. Applications of optical Fourier transforms. Elsevier, 2012. 545 p.
2. Zhu X., Yao H., Yu J., et al. Inverse design of a spatial filter in edge enhanced imaging // Opt. Lett. 2020. V. 45. № 9. P. 2542–2545. https://doi.org/10.1364/OL.391429
3. Ambs P. Optical computing: A 60-year adventure // Adv. Opt. Technol. 2010. P. 372652. https://doi.org/10.1155/2010/372652
4. Kazanskiy N.L., Butt M.A., Khonina S.N. Optical computing: Status and perspectives // Nanomaterials. 2022. V. 12. P. 2171. https://doi.org/10.3390/nano12132171
5. Antonov A.I., Greisukh G.I., Ezhov E.G., et al. Diffractive elements for imaging optical systems // Optoelectron. Instrument. Proc. 2017. V. 53. P. 421–430. https://doi.org/10.3103/S8756699017050016
6. Khonina S.N., Kazanskiy N., Butt M.A. Exploring diffractive optical elements and their potential in free space optics and imaging — A comprehensive review // Laser Photonics Rev. 2024. V. 2024. P. 2400377. https://doi.org/10.1002/lpor.202400377
7. Zhou J., Qian H., Zhao J., et al. Two-dimensional optical spatial differentiation and high-contrast imaging // National Sci. Rev. 2021. V. 8. № 6. P. nwaa176. https://doi.org/10.1093/nsr/nwaa176
8. Chen L., Li S., Bai Q., et al. Review of image classification algorithms based on convolutional neural networks // Remote Sens. 2021. V. 13. P. 4712. https://doi.org/10.3390/rs13224712
9. Khonina S.N., Kazanskiy N.L., Skidanov R.V., et al. Exploring types of photonic neural networks for imaging and computing — A review // Nanomaterials. 2024. V. 14. P. 697. https://doi.org/10.3390/nano14080697
10. Гонсалес Р., Вудс Р. Цифровая обработка изображений / Пер. с англ. под ред. Чочиа П.А. М.: Техносфера, 2006. 1072 с.
Gonzalez R., Woods R. Digital image processing. Prentice-hall of India Pvt. Limited, 2002. 816 p.
11. Gilicze B., Dajka R., Földes I.B., et al. Improvement of the temporal and spatial contrast of the nonlinear Fourier-filter // Opt. Exp. 2017. V. 25. P. 20791–20797. https://doi.org/10.1364/OE.25.020791
12. Сцепуро Н., Ковалев М. Пространственно-спектральная фильтрация светового поля с помощью фазового модулятора света // Опт. и спектроск. 2023. V. 131. P. 160–169. http://doi.org/10.21883/OS.2023.02. 54998.17-23
Stsepuro N.G., Kovalev M.S. Spatial-spectral filtering of a light field using a phase light modulator // Opt. and Spectrosc. 2023. V. 2. P. 151. http://doi.org/10.61011/EOS.2023.02.55776.17-23
13. Guo C., Han Y., Xu J., et al. Radial Hilbert transform with Laguerre–Gaussian spatial filters // Opt. Lett. 2006. V. 31. № 10. P. 1394–1396. http://doi.org/10.1364/OL.31.001394.
14. Ananin M.A., Khonina S.N. Modelling of optical processing of images with use of the vortical spatial filter // Computer Opt. 2009. V. 33. № 4. P. 466–472.
15. Eu J.K.T., Liu C.Y.C., Lohmann A.W. Spatial filters for differentiation // Opt. Commun. 1973. V. 9. № 2. P. 168–171. https://doi.org/10.1016/0030-4018(73)90251-4
16. Davis J.A., Smith D.A., McNamara D.E., et al. Fractional derivatives – analysis and experimental implementation // Appl. Opt. 2001. V. 40. № 32. P. 5943–5948. http://dx.doi.org/10.1364/AO.40.005943
17. Garces-Chavez V., McGloin D., Padgett M.J., et al. Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle // Phys. Rev. Lett. 2003. V. 91. № 9. P. 093602. https://doi.org/10.1103/PhysRevLett.91.093602
18. Khonina S.N., Porfirev A.P. Generation of multi-contour plane curves using vortex beams // Optik. 2021. V. 229. P. 166299. http://doi.org/10.1016/j.ijleo.2021.166299
19. Khonina S.N., Porfirev A.P., Khorin P.A., et al. Multiorder optical spatial vortex filters for simultaneous contour extraction of various parts of an object // Computer Opt. 2024. V. 48. № 4. P. 525–534. http://doi.org/10.18287/2412-6179-CO-1497
20. Wang J., Pang H., Zhang M., et al. Diffractive element design for generating multi-channel structured light field // Proc. SPIE. 2016. V. 9685. P. 96850P. https://doi.org/10.1117/12.2245651