Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
D. Q. Yuan, M. Zhou, Q. R Wu, J. T. Xu, H. F. Yang Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 6. С. 31–35.
D. Q. Yuan, M. Zhou, Q. R Wu, J. T. Xu, H. F. Yang Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser [in English] // Opticheskii Zhurnal. 2015. V. 82. № 6. P. 31–35.
D. Q. Yuan, Q. R. Wu, J. T. Xu, M. Zhou, and H. F. Yang, "Periodic nanohole array structure induced on a silicon surface by direct writing with a femtosecond laser," Journal of Optical Technology. 82(6), 353-356 (2015). https://doi.org/10.1364/JOT.82.000353
A regular micro-apparatus covered with periodic nanohole, nanoridge, and ripple structures on silicon bulk (with crystal orientation of 110) was formed by micromachining with a tightly focused beam of a femtosecond laser with a wavelength of 800 nm, a repetition rate of 1 kHz, and a pulse length of 130 fs in air. We used laser direct writing technology to form periodic double-row nanohole structures, and the laser was focused with a 10× focusing objective lens (NA=0.3). We investigated the relationship between the width of structures and the speed of processing to provide knowledge of the evolution of the nanohole and nanoridge structures.
фемтосекундный лазер, матрицы с наноотверстиями, пульсации, прямая запись
Благодарность:Работа выполнена при финансовой поддержке Национального фонда естественных наук Китая (грант № 51405181), Молодежного фонда естественных наук провинции Цзянсу (грант № BK20130407), Национального фонда естественных наук колледжей и университетов провинции Цзянсу (грант № 13KJB460001), Научного фонда трибологии государственной ключевой лаборатории трибологии (грант № SKLTKF10B06).
Коды OCIS: 220.4610, 140.3290
Список источников:1. Birnbaum M. Semiconductor Surface Damage Produced by Ruby Lasers // Appl. Phys. 1965. V. 36. P. 3688–3689.
2. Korte F., Koch J., Chichkov B.N. Formation of Microbumps and Nanojets on Gold Targets by Femtosecond Laser Pulses // Appl. Phys. A. 2004. V. 79. P. 879–881.
3. Pereira A., Cros A., Delaporte P., Georgiou S., Manousaki A., Marine W., Sentis M. Surface Nanostructuring of Metals by Laser Irradiation: Effects of Pulse Duration, Wavelength and Gas Atmosphere // Appl. Phys. A. 2004. V. 79. P. 1433–1437.
4. Nolte S.,Chichkov B.N.,Welling H.,Shani Y.,Liebermann K., Terkel H. Nanostructuring with Spatially Localized Femtosecond Laser Pulses // Opt. Lett. 1999. V. 24. P. 914–916.
5. Crouch C.H.,Carey J.E.,Warrender J.M., Aziz M.J., Mazur E., Génin F.Y. Comparison of Structure and Properties of Femtosecond and Nanosecond Laser-Structured Silicon // Appl. Phys. Lett. 2004. V. 84. P. 1850–1852.
6. Yuan D.Q., Zhou M., Cai L. Femtosecond Laser Micromachining of an Au/Cr Film Nanostack // Laser Physics. 2008. V. 18. № 9. P. 1092–1097.
7. Tan B., Venkatakrishnan K. A Femtosecond Laser-Induced Periodical Surface Structure on Crystalline Silicon // J. Micromech. Microeng. 2006. V. 16. P. 1080–1088.
8. Paivasaari K., Kaakkunen J., Kuittinen M., Jaaskelainen T. Enhanced Optical Absorptance of Metals Using Interferometric Femtosecond Ablation // Opt. Exp. 2007. V. P. 13838–13843.
9. Welsh G.H., Hunt N.T., Wynne K. Terahertz-Pulse Emission Through Laser Excitation of Surface Plasmons in a Metal Grating // Phys. Rev. Lett. 2007. V. 98. P. 026803-1–4.
10. Han W.Q., Wu L., Klie R.F., Zhu Y. Enhanced Optical Absorption Induced by Dense Nanocavities inside Titania Nanorods // Adv. Mater. 2007. V. 19. P. 2525–2529.
11. Gerbig Y.B., Ahmed S.I., Chetwynd D.G., Haefke H. Topography-Related Effects on the Lubrication of Nanostructured Hard Surfaces // Tribol. Int. 2006. V. 39. P. 945–952.
12. Harzic R.L., Schuck H., Sauer D., Anhut T., Riemann I.R., Konig K. Sub-100 nm Nanostructuring of Silicon by Ultrashort Laser Pulses // Opt. Exp. 2005. V. 13. № 17. P. 6651–6656.
13. Bonse J., Rosenfeil A., Krüger J. On the Role of Surface Plasmon Polarizations in the Formation of Laser-Induced Periodic Surface Structures upon Irradiation of Silicon by Femtosecond-Laser Pulse // Appl. Phys. 2009. V. 106. P. 104910.
14. Zhang C.Y., Yao J.W., Liu H.Y., Dai Q.F., Wu L.J., Lan S., Trofimov V.A., Lysak T.M. Colorizing Silicon Surface with Regular Nano-Hole Arrays Induced by Femtosecond Laser Pulses // Opt. Lett. 2012. V. 37. № 6. P. 1106–1108.
15. Zhou M., Yuan D.Q., Zhang W., Shen J., Li B.J., Song J., Cai L. Sub-Wavelength Ripple Formation on Silicon Induced by Femtosecond Laser Radiation // Chin. Phys. Lett. 2009. V. 26. № 3. P. 03790-1–4.
16. Dalili A., Tan B., Venkatakrishnan K. Silicon Wafer Surface Patterning Using Femtosecond Laser Irradiation below Ablation Threshold // Optics and Lasers in Engineering. 2010. V. 48. № 3. P. 346–353.
17. Rosenfeld A., Rohloff M., Höhm S., Krüger J., Bonse J. Formation of Laser-Induced Periodic Surface on Fused Silica upon Multiple Parallel Polarized Double-Femtosecond-Laser-Pulse // Applied Surface Science. 2012. V. 258. P. 9233–9236.
18. Yuan D.Q., Zhou M., Lu D.Q., Xu J.T. Evolution of Microstructures on Silicon Induced by Femtosecond Laser with Multiple Pulses // Optica Applicata. 2011. V. 3. P. 727–734.
19. Wang J.C., Guo C.L. Ultrafast Dynamics of Femtosecond Laser-Induced Periodic Surface Pattern Formation on Metals // Appl. Phys. Lett. 2005. V. 87. № 25. P. 251914.
20. Trice J., Thomas D., Favazza C., Sureshkumar R., Kalyanaraman R. Pulsed-Laser-Induced Dewetting in Nanoscopic Metal Films : Theory and Experiments // Phys. Rev. B. 2007. V. 75. P.235439.
21. Gedvilas M., Voisiat B., Račiukaitis G., Regelskis K. Self-Organization of Thin Metal Films by Irradiation with Nanosecond Laser Pulses // Applied Surface Science. 2009. V. 255. P. 9826–9829.