Performance analysis of bidirectional hybrid orthogonal frequency division multiplexing-Ethernet passive optical access network
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Vishal Sharma, Shivani Sharma Performance analysis of bidirectional hybrid orthogonal frequency division multiplexing-Ethernet passive optical access network [на англ. яз.] // Оптический журнал. 2015. Т. 82. № 9. С. 59–63.
Vishal Sharma, Shivani Sharma Performance analysis of bidirectional hybrid orthogonal frequency division multiplexing-Ethernet passive optical access network [in English] // Opticheskii Zhurnal. 2015. V. 82. № 9. P. 59–63.
Vishal Sharma and Shivani Sharma, "Performance analysis of bidirectional hybrid orthogonal frequency division multiplexing-Ethernet passive optical access network," Journal of Optical Technology. 82(9), 621-624 (2015). https://doi.org/10.1364/JOT.82.000621
For the bottleneck problem of broadband access networks, the Ethernet passive optical network comes out as a striking and promising solution. Even though, Ethernet passive optical network nodes necessitate a cost-effective up-gradation. Accordingly, we propose and demonstrate a hybrid orthogonal frequency division multiplexing-Ethernet passive optical network employing an optical single side band modulation scheme. Case A demonstrates a contrast between a symmetric bidirectional single channel orthogonal frequency division multiplexing-Ethernet passive optical network at a data rate of 10 and 5 Gbps after a fiber link of 20 km. Case B targets the transmission of a symmetric bidirectional single channel orthogonal frequency division multiplexing-optical single side band-Ethernet passive optical network system and achieves a fiber link of 20 km with a split ratio of 8. Afterwards, eight upstream channels are transmitted simultaneously and successfully obtained at the optical linear terminal side to make a bidirectional Ethernet passive optical network system. Further, a contrast between transmission at a data rate of 10 and 5 Gbps is carried out that achieves a fiber link of 20 km with a split ratio of 8.
PON, EPON, OFDM
Коды OCIS: 060.0060
Список источников:1. Lin Y.M. and Tien P.L. Next-Generation OFDMA-Based Passive Optical Net-Work Architecture Supporting Radio-over-Fiber // IEEE Journal of Select. Areas Communication. 2010. V. 28. Iss. 6, August. P. 791−799.
2. Cvijetic N., Qian D., Hu J., Wang T. Orthogonal Frequency Division Multiple Access PON (OFDMA-PON) for Colorless Upstream Transmission beyond 10 Gbps // IEEE J. Select. Areas Commun. 2010. V. 28. Iss. 6, August. P. 781–790.
3. Farmer J.O. Delivering Video, Voice and Data to Consumers via an All Fiber Network // Consumer Electronics. Digest of Technical Papers. ICCE Intern. Conf. 2002. P. 158–159, http://dx.doi.org/10.1109/ICCE. 2002.1013971
4. McGarry M.P., Maier M., and Reisslein M. WDM Ethernet Passive Optical Networks (EPONs) // IEEE Commun. Magazine. 2006. V. 44. № 2. P. 15−22.
5. Kaur Baljeet, Kapoor Vinod, Sharma Ajay K. Performance Enhancement with Square Root Module for WDM RoF-EPON Link // Optic − International Journal for Light and Electron Optics. 2013. V. 124. Iss. 10, May. P. 967−971. www.elsevier.de/ijleo
6. Tang Lei, Wu Shibao, Li Yulong, Lu Hongke. Novel Survivable Scheme for OFDM Passive Optical Network // Optic − International Journal for Light and Electron Optics. 2013. V. 124. Iss. 20, October. P. 4664−4666. www.elsevier.de/ijleo
7. Deng Lei, Zhao Ying, Yu Xiambin, Arlunno V., Borkowski R., Liu Deming, Monroy I.T. Experimental Demonstration of an Improved EPON Architecture Using OFDMA for Bandwidth Scalable LAN Emulation // Optic − International Journal for Light and Electron Optics. 2011. V. 17. Iss. 6, December. P. 554−557. www.elsevier.de/ijleo
8. Shao Qi Gan, Chaoqin, Wang Ruixue, Shi Qiongling. Dynamic Bandwidth Allocation of Both Upstream and Downstream in Orthogonal Frequency Division Multiplexing Passive Optical Network // Optic − International Journal for Light and Electron Optics. 2013. V. 124. Iss. 18, September. P. 3476−3479. www.elsevier.de/ijleo
9. IEEE P802.3ah task force; http://www.ieee802.org/3/efm.