Seasonal investigation on prediction accuracy of atmospheric turbulence strength with a new model at Punalkulam, Tamil Nadu
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
A. Arockia Bazil Raj, J. P. Lancelot Seasonal investigation on prediction accuracy of atmospheric turbulence strength with a new model at Punalkulam, Tamil Nadu [на англ. яз.] // Оптический журнал. 2016. Т. 83. № 1. С. 73–89.
A. Arockia Bazil Raj, J. P. Lancelot Seasonal investigation on prediction accuracy of atmospheric turbulence strength with a new model at Punalkulam, Tamil Nadu [in English] // Opticheskii Zhurnal. 2016. V. 83. № 1. P. 73–89.
A. Arockia Bazil Raj and J. P. Lancelot, "Seasonal investigation on prediction accuracy of atmospheric turbulence strength with a new model at Punalkulam, Tamil Nadu," Journal of Optical Technology. 83(1), 55-68 (2016). https://doi.org/10.1364/JOT.83.000055
Atmospheric parameters strongly affect the performance of free space optical communication systems when an optical wave is propagating through an inhomogeneous turbulence transmission medium. Developing models to get an accurate prediction of the turbulence strength (Cn2) according to meteorological parameters becomes significant to understand the behavior of the channel in different seasons. A dedicated free space optics link for the range of 0.5 km at an altitude of 15.25 m is established and explained. The power level and beam centroid information of the received signal with meteorological parameters at the same time are continuously measured using the optoelectronic assembly and developed weather station, respectively, and stored in a data logging computer. The existing models selected, based on exhibiting relatively less prediction error, for comparative analysis are briefed. Measured meteorological parameters (as input factors) and Cn2 (as a response factor) of size [2000×4] are used for linear regression analysis and to design the empirical models more suitable at the test field. Along with the model formulation methodologies, the contributions of the input factors’ individual and combined effects on the response surface and coefficient of determination (R2) estimated using Analysis of Variance tools are presented. Model equation-V (R2=98.93%) is finalized for predicting Cn2. In addition, the prediction accuracy of the proposed and selected models for different seasons in a one year period are investigated and validated in terms of the sum of absolute error (SAE). The average SAE of 0.000641×10−9 m−2/3 for Cn2 is achieved using the new model in a longer range dynamic of meteorological parameters during different local seasons.
метеорологические данные, регрессионная модель, уравнение модели V, сцинтилляция, блуждание пучка, сила оптической турбулентности
Коды OCIS: 010.1330, 120.3940, 200.2605, 330.7326, 290.5930
Список источников:1. Brandenburg J.C. Signal detection for optical communications through the turbulent atmosphere // IEEE Trans. Commun. 2009. V. 57. № 11. P. 3425–3432.
2. GappmairA.A. Further results on the capacity of free-space optical channels in turbulent atmosphere // IET Commun. 2011. V. 5. Iss. 9. P. 1262–1267.
3. Raj A.B., Selvi A.A.V., Kumar J. D., and Raghavan S. Intensity feedback-based beam wandering mitigation in free-space optical communication using neural control technique // EURASIP Journal on Wireless Communications and Networking. 2014. V. 160. P. 1–18.
4. Ni W., Miyamoto Y., Wakamori K., Kazaura K., Matsumoto M., Higashino T., Tsukamoto K., and Komaki S. Experimental study of atmospheric turbulence effects on RoFSO communication systems // PIERS Online. 2009. V. 5. № 1. P. 65–70.
5. Silva V.N.H., Barbero A.P.L., and Ribeiro R.M. A new triangulation-like technique for the evaluation of the refractive index structure constant (Cn 2 ) in free-space optical links // J. Lightwave Technol. 2011. V. 29. № 24. P. 3603–3610.
6. Zamek S. and Yitzhaky Y. Turbulence strength estimation from an arbitrary set of atmospherically degraded images // J. Opt. Soc. America A. 2006. V. 23. № 12. P. 3106–3113.
7. Tunick A. Optical turbulence parameters characterized via optical measurements over a 2.33 km free-space laser path // Opt. Exp. 2008. V. 16. Iss.19. P. 14645–14654.
8. Mudge K.A., Silva K.K.M.B.D., Clare B.A., Grant K.J., and Nener B.D. Scintillation Index of the free space optical phase screen modeling and experimental results // International. Conf. “Space Optical Systems and Applications”. Santa Monica, 2011. P. 403–409.
9. Recolons J., Andrews L.C., and Philips R.L. Analysis of beam wander effects for a horizontal-path propagating gaussian-bam wave: Focused beam case // Opt. Eng. 2007. V. 46. № 8. P. 1–11.
10. Raj A.A.B., Selvi J.A.V. Comparison of different models for ground-level atmospheric attenuation prediction with new models according to local weather data for FSO applications // J. Opt. Commun. 2015. V. 54. Iss. 4. P. 802–815.
11. Leclerc T.T., Philips R.L., Andrews L.C., Wayne D.T., Saucer P., and Crabbs R. Prediction of the ground-level refractive index structure parameter from the measurement of atmospheric conditions // SPIE Conf. “Atmospheric Propagation VII”. Florida, 2010. Part. 7685. P. 1–8.
12. Sadot D., Kopeika N.S. Forecasting optical turbulence strength on the basis of macroscale meterology and aerosols: Models and validation // Opt. Eng. 1992. V. 31. № 2. P. 200–212.
13. Doss-Hammel S., Oh E., Ricklin J., Eaton F., Gilbert C., Tsintikidis D. A comparison of optical turbulence model // SPIE Conf. “Free-Space Laser Communications IV”. Denver, CO, 2004. Part 5550. P. 236–245.
14. Yitzhaky Y., Dror I., and Kopeika N.S. Restoration of atmospherically blurred images according to weatherpredicted atmospheric modulation transfer functions // Opt. Eng. 1997. V. 36. № 11. P. 3064–3072.
15. Bendersky S., Kopeika N.S., and Blaunstein N. Atmospheric optical turbulence over land in Middle East coastal environments: Prediction modeling and measurements // Appl. Opt. 2004. V. 43. № 20. P. 4070–4079.
16. Monin A.S. and Obukhov A.M. Basic law of turbulent mixing near the ground // J. Geophysical Institute of Slovak Academy of Sciences, USSAR. 1954. V. 24. № 151. P. 163–187.
17. Majumdar A.K., Eaton F.D., Jensen M.L., Kyrazis D.T., Schumm B., Dierking M.P., Shoemake M.A., Dexheimer D., and Ricklin J.C. Atmospheric turbulence measurements over desert site using ground-based instruments, kite/tethered – blimp platform and aircraft relevant to optical communications and imaging systems: Preliminary results // SPIE Conf. “Free-Space Laser Communications VI”. San Diego, California, USA, 2006. Part 6304. P. 1–12.
18. Raj A.A.B., Selvi J.A.V., and Raghavan S. Real-time measurement of meteorological parameters for estimating low-altitude atmospheric turbulence strength (Cn 2) // IET Science, Measurement & Technology. 2014. V. 8. Iss. 6. P. 459–469.
19. Randall D. An introduction to atmospheric modeling. USA, Colorado State University, 2004.
20. Arockia Bazil А., Selvi J.A.V., Kumar D., Raghavan S. Design of cognitive decision making controller for autonomous online adaptive beam steering in free space optical communication system // Wireless Personal Communications. 2015. V. 84. № 1. P. 765–799.
21. Tunick A. Statistical analysis of measured free-space laser signal intensity over a 2.33 km optical path // Opt. Exp. 2007. V. 15. № 7. P. 3619–3628.
22. Zamek S., Yitzhaky Y. Turbulence strength estimation from an arbitrary set of atmospherically degraded images // J. Opt. Soc. America A. 2006. V. 23. № 12. P. 3106–3113.
23. Gupta S.K., Mathew S.K., and Venkatakrishnan P. Development of solar scintillometer // J. Astrophysics. 2006. V. 27. P. 315–320.
24. Andrews L.C., Phillips R.L., and Hopen C.Y. Laser beam scintillation with applications // Proc. SPIE, USA. 2001.
25. Raj A.B., Selvi J.A.V., Kumar D., and Sivakumaran N. Mitigation of beam fluctuation due to atmospheric turbulence and prediction of control quality using intelligent decision-making tools // Appl. Opt. 2014. V. 53. № 15. P. 3796–3806.
26. Smith S.T. MATLAB Advanced GUI Development. USA: Dog Ear Publishing, 2006.
27. Font C.O., Chang M.P.J.L., Oh E., and Gilbreath C. Humidity contribution to the refractive index structure function Cn 2 // SPIE Conf. “Atmospheric Propagation III”. Florida, 2006. Part 6215. P. 1–9.