DOI: 10.17586/1023-5086-2021-88-01-53-59
УДК: 091, 535.3
Высокочувствительные волоконные датчики на основе встроенных интерферометров Маха–Цендера и Фабри–Перо
Полный текст «Оптического журнала»
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Qian Ma, Lijun Li, Fengjuan Wei, Jianhong Sun, Fei Yu, Jiahui Huang, Xingchen Gu, Yanhua Ma High sensitivity sensors based on open cavity in-fiber Fabry–Perot and Mach–Zehnder interferometers (Высокочувствительные волоконные датчики на основе встроенных интерферометров Маха–Цендера и Фабри–Перо) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 1. С. 53–59. http://doi.org/10.17586/1023-5086-2021-88-01-53-59
Qian Ma, Lijun Li, Fengjuan Wei, Jianhong Sun, Fei Yu, Jiahui Huang, Xingchen Gu, Yanhua Ma High sensitivity sensors based on open cavity in-fiber Fabry–Perot and Mach–Zehnder interferometers (Высокочувствительные волоконные датчики на основе встроенных интерферометров Маха–Цендера и Фабри–Перо) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 1. P. 53–59. http://doi.org/10.17586/1023-5086-2021-88-01-53-59
Qian Ma, Lijun Li, Fengjuan Wei, Jianhong Sun, Fei Yu, Jiahui Huang, Xingchen Gu, and Yanhua Ma, "High sensitivity sensors based on open cavity in-fiber Fabry–Perot and Mach–Zehnder interferometers," Journal of Optical Technology. 88(1), 37-41 (2021). https://doi.org/10.1364/JOT.88.000037
Созданы волоконно-оптические датчики показателя преломления жидкости и изменения температуры, основанные на встроенных в волокно интерферометрах Фабри–Перо и Маха–Цендера. Проведены сравнительные исследования их характеристик. Для датчика с резонатором Фабри–Перо получены значения чувствительности к изменениям показателя преломления 50,001 нм/RIU (нанометр на единицу показателя преломления) в диапазоне значений последнего от 1,3351 до 1,3737, к изменениям температуры — 0,016 нм/град. Для датчика с комбинированными резонаторами Фабри–Перо и Маха–Цендера значения этих чувствительностей составили соответственно 587,089 нм/RIU в диапазоне показателей преломления 1,3331–1.3415, –647,755 нм/RIU в диапазоне показателей преломления 1,3415–1,3737, к изменениям температуры — 0,032 нм/град.
интерферометр, показатель преломления жидкости, датчик температуры
Коды OCIS: 230.2285, 220.4000, 230.3390
Список источников:1. Li L.J., Ma Q., Cao M.Y., Zhang G.N., Zhang Y., Jiang L., Gao C.T., Yao J., Gong S.S., Li W.X. High stability Michelson refractometer based on an in-fiber interferometer followed with a Faraday rotator mirror // Sens. Actuator B-Chem. 2016. V. 234. P. 674–679.
2. Li L.J., Ma Q., Cao M.Y., Zhang G.N., Zhang Y., Jiang L., Gao C.T., Yao J., Gong S., Li W.X. Study of interference wavelength characteristics of fiber Bragg grating modulated all-fiber inline Mach–Zehnder interferometer // Sensors & Materials. 2017. V. 29. № 1. P. 15–21.
3. Li X.G., Zhao Y., Cai L., Wang Q. Simultaneous measurement of RI and temperature with a FP and Mach–Zehnder composite interferometer // IEEE Photonics Technol. Lett. 2016. V. 28. № 17. P. 1–1.
4. Zhao L., Zhang Y.D., Chen Y.H., Wang G.F. Composite cavity fiber tip Fabry–Perot interferometer for high temperature sensing // Opt. Fiber Technol. 2019. V. 50. № 2019. P. 31–35.
5. Duan D.W., Rao Y.G., Xu L.C., ZhuT., Deng M., Wu D., Yao J. In-fiber Fabry–Perot and Mach–Zehnder interferometers based on hollow optical fiber fabricated by arc fusion splicing with small lateral offsets // Opt. Commun. 2011. V. 284. № 22. P. 5311–5314.
6. Rong Q.Z., Sun H., Qiao X.G., Zhang J., Hu M.L., Fen Z.Y. A miniature fiber-optic temperature sensor based on a Fabry–Perot interferometer // J. Opt. 2012. V. 14. № 4. P. 059501–059501.
7. Xu L.C., Deng M., Duan D.W., Wen W.P., Han M. High-temperature measurement by using a PCF-based Fabry–Perot interferometer // Optics & Lasers in Engineering. 2012. V. 50. № 10. P. 1391–1396.
8. Zhang Y.N., Huang J., Lan X.W., Yuan L., Xiao H. Simultaneous measurement of temperature and pressure with cascaded extrinsic Fabry–Perot interferometer and intrinsic Fabry–Perot interferometer sensors // Opt. Eng. 2014. V. 53. № 6. P. 067101.
9. Jia P.G., Fang G.H., Liang T., Hong Y.P., Tan Q.L., Chen X.Y., Liu W.Y., Xue C.Y., Liu J., Zhang W.D., Xiong J.J. Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application // Sens. Actuator B-Chem. 2017. V. 244. P. 226–232.
10. Shangguan C.M., Zhang W., Hei W., Luo F., Zhu L.Q. Fabry–Perot cavity cascaded sagnac loops for temperature and strain measurements // Opt. Eng. 2018. V. 57. № 4. P. 1.
11. Ying Y.B., Zhao C.L., Gong H.P., Shang S.Y., Hou L.Y. Demodulation method of Fabry–Perot sensor by cascading a traditional Mach–Zehnder interferometer // Hangzhou: Opt. Laser Technol. 2019. № 118. P. 1391–1396.
12. Wang L.Q., Yang L., Zhang C., Miao C.Y., Zhao J.F., Xu W. High sensitivity and low loss open-cavity Mach–Zehnder interferometer based on multimode interference coupling for refractive index measurement // Opt. Laser Technol. 2019. № 109. P. 193–198.
13. Zhang H., Gao S.H., Luo Y.H., Chen Z.S., Xiong S.S., Wan L., Huang X.C., Huang B.S., Feng Y.H., He M., Liu W.P., Chen Z., Li Z.H. Ultrasensitive Mach–Zehnder interferometric temperature sensor based on liquidfilled D-shaped fiber cavity // Sensors. 2018. V. 18. № 4. P. 1239.