DOI: 10.17586/1023-5086-2021-88-02-50-57
Одновременное измерение температуры и усилий на основе гибридно-наполненного волокна
Полный текст на elibrary.ru
Публикация в Journal of Optical Technology
Min Zhou, Junqi Guo, Xinhai Zou, Renpu Li, Yu Liu, Yu Pang Simultaneous temperature and force measurement based on hybrid-filled fiber (Одновременное измерение температуры и усилий на основе гибридно-наполненного волокна) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 2. С. 50–57. http://doi.org/10.17586/1023-5086-2021-88-02-50-57
Min Zhou, Junqi Guo, Xinhai Zou, Renpu Li, Yu Liu, Yu Pang Simultaneous temperature and force measurement based on hybrid-filled fiber (Одновременное измерение температуры и усилий на основе гибридно-наполненного волокна) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 2. P. 50–57. http://doi.org/10.17586/1023-5086-2021-88-02-50-57
Min Zhou, Junqi Guo, Xinhai Zou, Renpu Li, Yu Liu, and Yu Pang, "Simultaneous temperature and force measurement based on hybrid-filled fiber," Journal of Optical Technology. 88(2), 94-99 (2021). https://doi.org/10.1364/JOT.88.000094
Два различных механизма чувствительности датчиков, эффекты резонансной связи и наличия фотонной запрещённой зоны реализованы в одном и том же участке волокна с помощью технологии гибридного жидкостного наполнения. Экспериментально показано, что скорости сдвигов положений резонансного провала и левого края запрещённой зоны, вызванные влиянием изменения температуры и усилий, различны. Потери, вносимые таким чувствительным звеном, последовательно включенным в волокно, составили менее 10 Дб. Таким образом, гибридно-наполненное волокно может быть использовано как двухфакторный датчик, имея при этом преимущества высокой чувствительности, лёгкости изготовления, компактности и малости потерь.
микроструктуриванное оптическое волокно, гибридно-наполненное волокно, двухфакторный датчик, резонансная связь, фотонная запрещённая зона
Коды OCIS: 060.4005, 060.2370, 260.5740, 130.0130, 060.2300
Список источников:1. Liu Q., Li S.G., Li J., Chen H.L. Ultrashort and high-sensitivity refractive index sensor based on dual-core photonic crystal fiber // Optical Engineering. 2017. V. 56. P. 0371071–0371076.
2. Das S., Singh V.K. Refractive index sensor based on selectively liquid infiltrated birefringent photonic crystal fiber // Photonics and Nanostructures-Fundamentals and Applications. 2019. V. 201. P. 1634891-15.
3. Abbasi M., Soroosh M., Namjoo E. Polarization insensitive temperature sensor based on liquid filled photonic crystal fiber // Optik. 2018. V. 168. P. 342–347.
4. Guo J., Liu Y.G., Wang Z., Han T., Huang W., Luo M. Tunable fiber polarizing filter based on a single-holeinfiltrated polarization maintaining photonic crystal fiber // Optics express. 2014. V. 22. P. 7607–7616.
5. Wang C., Shum P.P., Hu D.J.J., Xu Z., Zheng Y. Temperature sensor based on selectively liquid infiltrated dual core photonic crystal fiber // 2019 IEEE Photonics Conference. September 29, 2019–October 3, 2019. San Antonio, TX, USA. P. 1–2.
6. Guo J., Zhou M., Lu Y., Di Ke., Han J., Tang C., Xu X., Liu Y. A temperature-insensitive polarization filter and a neotype sensor based on a hybrid-circular-hole microstructured optical fiber // Optoelectronics Letters. 2018. V. 14. P. 280–285.
7. Du C., Wang Q., Zhao Y. Electrically Tunable long period gratings temperature sensor based on liquid crystal infiltrated photonic crystal fibers // Sensors & Actuators A Physical. 2018. V. 278. P. 78–84.
8. Algorri J., Zografopoulos D., Tapetado A., Poudereux D., Sánchez-Pena J. Infiltrated photonic crystal fibers for sensing applications // Sensors. 2018. V. 18. P. 1–32.
9. Yu W.B., Wang Y., Tian J. Strain characteristics of selectively infiltrated photonic crystal fibers // International Society for Optics and Photonics. 2015. V. 9655. P. 96552A1-96552A5.
10. Liang H., Wang Z., Liu Y., Li H. Coupling characteristics of selective-infiltration-based locally tapered photonic crystal fiber // IEEE Photonics Journal. 2017. V. 9. P. 1–7.
11. Zhang R., Pu S., Li Y., Zhao Y., Jia Z., Yao J., Li Y. Mach-zehnder interferometer cascaded with fbg for simultaneous measurement of magnetic field and temperature // IEEE Sensors Journal. 2019. V. 19. P. 4079–4083.
12. Zhong Y., Tong Z., Song D., Zhang W., Qin J., Gao W. Refractive index and temperature sensor based on cleaved taper and spherical structure // Optoelectronics Letters. 2020. V. 16. P. 171–175.
13. Su G.H., Xu D.G., Shi J., Zhang H.W., Yao J.Q. A dual-parameter sensor for temperature and refractive index based on a sagnac loop composed of an lpfg and polarization maintaining fiber // Journal of Optoelectronics·laser. 2017. V. 28. P. 25–31.
14. Jiang M., Wang Z.M., Zhao Z.Z., Li K., Yang F. Long-period fiber grating cascaded to thin-core fiber for simultaneous measurement of liquid refractive-index and temperature // Sensor Review. 2017. V. 38. P. 79–83.
15. Li X.G., Zhou X., Zhao Y., Lv R.Q. Multi-modes interferometer for magnetic field and temperature measurement using photonic crystal fiber filled with magnetic fluid // Optical Fiber Technology. 2018. V. 41. P. 1–6.
16. Liang H., Zhang W., Geng P., Liu Y., Wang Z., Guo J., Gao S., Yan S. Simultaneous measurement of temperature and force with high sensitivities based on filling different index liquids into photonic crystal fiber // Optics letters. 2013. V. 38. P. 1071–1073.
17. Yang C., Zhang H., Liang H., Miao Y. Selectively liquid-infiltrated microstructured optical fiber for simultaneous temperature and force measurement // IEEE Photonics Journal. 2014. V. 6. P. 1–8.
18. Lin C., Liao C., Huang Y., Wang Y. Photonic crystal fiber with selective infiltration for high sensitivity simultaneous temperature and strain measurement // 2017 Conference on Lasers and Electro-Optics Pacific Rim. Singapore, Singapore. 31 July–4 Aug. 2017. P. 1–3.