ITMO
en/ en

ISSN: 1023-5086

en/

ISSN: 1023-5086

Научно-технический

Оптический журнал

Полнотекстовый перевод журнала на английский язык издаётся Optica Publishing Group под названием “Journal of Optical Technology“

Подача статьи Подать статью
Больше информации Назад

DOI: 10.17586/1023-5086-2021-88-04-70-84

Исследование влияния изменения параметров активатора на усиление туллиевого волоконного усилителя

Ссылка для цитирования:

Rajandeep Singh, Maninder Lal Singh Investigation of the effect of change in doping parameters on the gain of thulium doped fiber amplifier (Исследование влияния изменения параметров активатора на усиление туллиевого волоконного усилителя) [на англ. яз.] // Оптический журнал. 2021. Т. 88. № 4. С. 70–84. http://doi.org/10.17586/1023-5086-2021-88-04-70-84

 

Rajandeep Singh, Maninder Lal Singh Investigation of the effect of change in doping parameters on the gain of thulium doped fiber amplifier (Исследование влияния изменения параметров активатора на усиление туллиевого волоконного усилителя) [in English] // Opticheskii Zhurnal. 2021. V. 88. № 4. P. 70–84. http://doi.org/10.17586/1023-5086-2021-88-04-70-84

Ссылка на англоязычную версию:

Rajandeep Singh and Maninder Lal Singh, "Investigation of the effect of change in doping parameters on the gain of a thulium doped fiber amplifier," Journal of Optical Technology. 88(4), 215-226 (2021). https://doi.org/10.1364/JOT.88.000215

Аннотация:

Волоконные туллиевые оптические усилители (англ. TDFA) широко применяются для работы в диапазоне длин волн (1460−1530) нм (S-полоса). Исследован эффект изменения усиления активированного туллиевого волокна на основе ZrF4-BaF2-LaF3-AlF3-NaF (ZBLAN) при изменении радиуса и концентрации активатора. Проанализированы эффекты, связаные с изменениями условий накачки на длинах волн 1050 нм и (1050 + 1400 + 800) нм, соответственно. Вариации концентраций активатора находились в пределах (20−80)×1024 м −3, а радиусов — (0,3−1,3) мкм. Показано существенное изменения усиления Tm-ZBLAN усилителей при изменении указанных параметров. Пиковое значение усиления в 30,5 дБ наблюдалось при накачке (1050 + 1400 + 800) нм для концентрации 40×1024 м−3 и значении величины радиуса 0,9 мкм.

Ключевые слова:

ZBLAN, туллиевый оптический волоконый усилитель, S-полоса, усиление

Благодарность:

Работа является частью диссертации Раджандипа Сингха из Guru Nanak Dev University, Амритсар. Авторы выражают балгодарность университету Guru Nanak Dev University за предоставленные технические возможности и аппаратуру.

Коды OCIS: 060.0060, 060.2320, 060.2310

Список источников:

1. Komukai T., Yamamoto T., Sugawa O., Miyajima Y. Upconversion pumped Thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm // IEEE J. Quantum Electron. 1995. V. 31. No. 11. P. 1880–1889.
2. Allain J.Y., Monerie M., Poignant H. Tunable CW lasing around 0.82, 1.48, 1.88 and 2.35 μm in Thulium doped fluorozirconate fibre // Electron. Lett. 1989. V. 25. No. 24. P. 1660–1662.
3. Digonnet M.J.F. Rare-earth-doped fiber lasers and amplifiers. CRC Press. New York. 2001. P.798.
4. Kasamatsu T., Yano Y., Ono T. Laser-diode-pumped highly efficient gain-shifted Thulium-doped fiber amplifier operating in the 1480–1510-nm Band // IEEE Photonics Technol. Lett. 2001. V. 13. No. 5. P. 433–435.
5. Gomes A., Carvalho M., Sundheimer M., Bastos-Filho C., Martins-Filho J., Margulis W. Low pump power, short fiber dual pumped (800 nm+1050 nm) TDFA // Optical Fiber Communications Conference.Atlanta Georgia. United States. 23 March 2003. V. 2. P. 632.
6. Martins-Filho J.F., Bastos-Filho C.J.A., Carvalho M.T., Sundheimer M.L., Gomes A.S.L. Dual-wavelength (1050 nm + 1550 nm) pumped Thulium-doped fiber amplifier characterization by optical frequency-domain reflectometry // IEEE Photonics Technol. Lett. 2003. V. 15. No. 1. P. 24–26.
7. Kozak M.M., Caspary R., Kowalsky W. Thulium-doped fiber amplifier for the S-band // Proceedings of 6th International Conference on Transparent Optical Networks. Wroclaw, Poland. 4-8 July 2004. P. 51–54.
8. Nix M., Yam S.S. Highly efficient dual wavelength pumping scheme for Thulium-doped fiber amplifier // 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society. Montreal. 2006. P. 390–391.
9. Aozasa S., Masuda H., Shimizu M. S-band Thulium-doped fiber amplifier employing high Thulium concentration doping technique // J. Light. Technol. 2006. V. 24. No. 10. P. 3842–3848.
10. Aozasa S., Masuda H., Shimizu M., Yamada M. Highly efficient S-band Thulium-doped fiber amplifier employing high-Thulium-concentration doping technique // J. Light. Technol. 2007. V. 25. No. 8. P. 2108–2114.
11. Peterka P., Kasik.I .,Dhar. A. et al. Thulium-doped Silica fibers with enhanced 3H4 level lifetime: Modelling the devices for 800–820 nm band // Proc. SPIE 7843. High-Power Lasers and Applications. 78430A. 2010.
12. Emami S.D., Muhammad A.R., Harun S.W., Ahmad H., Rashid H.A.A. S-band Thulium-doped fiber amplifier enhancement using ASE suppression // Optical Fiber Communications Conference and Exhibition (OFC). 2014. San Francisco. CA. 9-13 March 2014. V. 1. P. 14–16.
13. Kaur I., Gupta N. Performance analysis of TDFA using 1050 nm pumping power for 1479–1555 nm range // Int. J. Comput. Digit. Syst. 2014. V. 3. No. 3. P. 227–235.
14. Li Z., Jung Y., Daniel. J.M.O. et al. Extreme short wavelength operation (1.65–1.7 μm ) of Silicabased Thuliumdoped fiber amplifier // Optical Fiber Communications Conference and Exhibition (OFC). Los Angeles. CA. 2015. V. 6. P. 1–3.

15. Jung Y., Li Z., Simakov N. et al. Silica-based Thulium doped fiber amplifiers for wavelengths beyond the L-band // Optical Fiber Communication Conference. OSA Technical Digest. Anaheim, California United States. 20–22 March 2016. Paper M3D.5.
16. Khamis M.A., Ennser K. Theoretical model of a Thulium-doped fiber amplifier pumped at 1570 nm and 793 nm in the presence of cross relaxation // J. Light. Technol. 2016. V. 34. No. 24. P. 5675–5681.
17. Khamis M.A., Ennser K. Gain variation induced by power transient in Thulium-doped fiber amplifier at 2 μm and its reduction by optical gain clamping technique // Opt. Commun. 2017. V. 384. P. 89–92.
18. Lai W.J., Tan Y.C. Dual-wavelength pumping (793 nm + 1600 nm) for Thulium doped Silica fiber laser // 23rd Opto-Electronics Commun. Conf. Jeju Island, Korea (South). 2-6 July 2018. No. Oecc. P. 1–2.
19. Pradhan D.D., Mandloi A., Panda A., Palai G. Efficient hetero amplifier for DWDM system // Opt. – Int. J. Light Electron Opt. 2019. V. 179. P. 315–322.
20. Thomas J.M., Crippa D., Maroney A. A 70 nm wide S-band amplifier by cascading TDFA and Raman fibre amplifier // Optical Fiber Communication Conference and Exhibit. 17–22 March 2001. Anaheim. CA. P. WDD9-1–WDD9-3.
21. Watekar P.R., Ju S., Han W. A single mode Tm-doped double-clad optical fiber amplifier operating at 843 nm wavelength // OFC/NFOEC Technical Digest. Optical Fiber Communication Conference. 2005 V. 3. P. 3–5.
22. Jin Li., Ma D., Ding Y. et al. Theoretical analysis of gain characteristics of Er3+-Tm3+-Co-doped Tellurite fiber amplifier // Electron. Lett. 2006. V. 18. No. 3. P. 460–462.
23. Luthi S., Sundheimer M., Margulis W., Gomes A.S. 800/1060 nm dual wavelength pumped TDFA using single active pump source // Electron. Lett. 2005. V. 41. No. 25. P. 7–8.
24. Peterka P., Kašík I., Matějec V. et al. Thulium-doped Silica-based optical fibers for cladding pumped fiber amplifiers // Opt. Mater. (Amst). 2007. V. 30. No. 1. P. 174–176.
25. Watekar P.R, Ju S., Han W. A small-signal power model for Tm-doped Silica-glass optical fiber amplifier // IEEE Photonics Technol. Lett. 2006. V. 18. No. 19. P. 2035–2037.
26. Chang J., Wang Q., Peng G. Optical amplification in Yb3+-codoped Thulium doped Silica fiber // Opt. Mater. (Amst). 2006. V. 28 P. 1088–1094.
27. Watekar P.R., Ju S., Han W.T. Analysis of 1064-nm pumped Tm-doped Silica glass fiber amplifier operating at 1470 nm // J. Light. Technol. 2007. V. 25. No. 4. P. 1045–1052.
28. Peterka P., Kasik I., Dhar A., Dussardier B., Blanc W. Theoretical modeling of fiber laser at 810 nm based on Thulium doped Silica fibers with enhanced 3H4 level lifetime // Opt. Express. 2011. V. 19. No. 3. P. 2773–2781.
29. El-nahal F.I., Husein A.H.M. Thulium doped fiber amplifier (TDFA) for S-band WDM systems // Open J. Appl. Sci. 2012. V. 2. No. 4B. P. 5–9.
30. Peterka P., Matějec V. Blanc W. et al. Thulium doped Silica-based optical fibers for cladding-pumped fiber amplifiers // Opt. Mater. (Amst). 2007. V. 30. No. 1. P. 174–176.
31. Singh R., Singh M.L., Kaur B. A novel triple pump 1050 nm, 1400 nm, 800 nm pumping scheme for Thulium doped fiber amplifier // Opt. – Int. J. Light Electron Opt. 2012. V. 123. No. 20. P. 1815–1816.
32. Singh R., Singh M.L. Gain evaluation of Silica based Thulium doped fibre amplifier with triple pump 1050 nm + 1400 nm + 800 nm configuration for different values of doping concentration and doping radius // Optoelectron. Adv. Mater. – Rapid Commun. 2016. V. 10. No. 9–10. P. 619–623.
33. Singh R., Singh M.L. Evaluating the effect of doping concentration and doping radius on the gain of silica based Thulium doped fiber amplifier // International Conference on Recent Advances and Innovations in Engineering. Jaipur India. 23–25 December 2016. P. 1-5.
34. Emami S.D., Harun S.W., Daud S.A., Ghani Z.A., Ahmad H. A theoretical study of double-pass Thulium doped fiber amplifiers // Opt. – Int. J. Light Electron Opt. 2010. V. 121. No. 14. P. 1257–1262.
35. Harun S.W. et al. Experimental and theoretical studies on a double-pass C-band Bismuth-based Erbiumdoped fiber amplifier // Opt. Laser Technol. 2010. V. 42. No. 5. P. 790–793.
36. Peterka P., Faure B., Blanc W., Karasek M., Dussardier B. Theoretical modelling of S-band Thulium-doped Silica fibre amplifiers // Opt. Quantum Electron. 2004. V. 36. P. 201–212.
37. Emami S.D., Harun S.W., Abd-Rahman F., Abdul-Rashid H.A., Daud S.A., Ahmad H. Optimization of the 1050 nm pump power and fiber length in single pass and double-pass Thulium doped fiber amplifiers // Prog. Electromagn. Res. B. 2009. V. 14. P. 431–448.
38. Bastos-Filho C.J., Martins-Filho J.F., Gomes A.S.L. 38 dB gain from a double-pass single-pump Thulium doped fiber amplifier // Proceedings of the International Microwave and Optoelectronics Conference. Foz do Iguacu Brazil. 20–23 September 2003. P. 125–128.
39. Park N., Lee W.J., Min B., Park J. Numerical analysis techniques for wideband amplifiers // Proc. SPIE – Int. Soc. Opt. Eng. 2001. V. 4604. P. 26–35.