DOI: 10.17586/1023-5086-2024-91-10-15-24
УДК: 535.3
Лабораторные измерения спектров отражения лесной растительности Европейской части России в диапазоне 1–2,4 мкм
Полный текст на elibrary.ru
Федотов Ю.В., Иванов С.Е., Белов М.Л., Городничев В.А., Чумаченко С.И. Лабораторные измерения спектров отражения лесной растительности Европейской части России в диапазоне 1–2,4 мкм // Оптический журнал. 2024. Т. 91. № 10. С. 15–24. http:// doi.org/10.17586/1023-5086-2024-91-10-15-24
Fedotov Yu.V., Ivanov S.E., Belov M.L., Gorodnichev V.A., Chumachenko S.I. Laboratory measurements of forest vegetation reflection spectra for European part of the Russian Federation in the range of 1–2.4 μm [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 10. Р. 15–24. http://doi.org/10.17586/1023-5086-2024-91-10-15-24
Предмет исследования. Проведены измерения и анализ спектров отражения листьев и хвои древесной растительности в спектральном диапазоне 1–2,4 мкм. Цель работы. Анализ возможностей использования гиперспектральных измерений спектров отражения основных видов лесной растительности в диапазоне 1–2,4 мкм для задач лесного хозяйства Российской Федерации. Метод. Выполнены лабораторные исследования спектров отражения листьев и хвои основных видов древесной растительности, характерной для Европейской части Российской Федерации. В состав лабораторного комплекса входил спектрометр для регистрации спектров отражения в диапазоне 1–2,4 мкм. В качестве образцов хвойной и лиственной древесной растительности были использованы зелёная хвоя ели, сосны и зелёные листья березы, дуба, клена, осины, липы. Измерения проводились в летний период (август) на базе филиала МГТУ им. Н.Э. Баумана в Дмитровском районе Московской области. Основные результаты. Показано, что спектры отражения лесной растительности в диапазоне 1–2,4 мкм дают возможность разделять хвойные и лиственные породы деревьев и проводить классификацию пород лиственных и хвойных пород лесной растительности. Надёжное разделение спектров хвойных и лиственных пород деревьев происходит в спектральных диапазонах 1,5–1,8 мкм и 2,1–2,4 мкм. Использование спектров отражения в диапазоне 1–2,4 мкм с разрешением 10 нм для березы, дуба, клёна, липы, осины, ели и сосны позволяет эффективно проводить их классификацию для 88% (и более) данных измерений для каждой породы. Практическая значимость. Проведённые исследования являются первым этапом работ по созданию банка данных спектральной отражательной способности древесной растительности, характерной для лесных массивов Российской Федерации. Использование гиперспектральных данных о лесных массивах в диапазоне 1–2,4 мкм позволит проводить распознавание пород деревьев, здоровых и больных деревьев, сухостоя и т.п. и подойти к разработке методики дистанционной инвентаризации лесных массивов.
спектры отражения, оптический мониторинг древесной растительности, банк данных спектральной отражательной способности
Благодарность:работа поддержана Программой стратегического академического лидерства «Приоритет 2030»
Коды OCIS: 300.6170, 280.1350, 260.3060
Список источников:1. World Energy Outlook 2021 [Electronic resource]. Access mode: https://www.iea.org/reports/world-energyoutlook-2021. Language English (accessed 17/06/2023).
2. Беспалов В.Г., Гришканич А.С., Данилов О.Б., Елизаров В.В., Жевлаков А.П., Завьялов А.К., Ильинский А.А., Кащеев С.В., Конопелько Л.А., Мак А.А. Рамановские гиперспектральные технологии дистанционного зондирования углеводородных геохимических полей // Оптический журнал. 2020. Т. 87. № 1. С. 16–22. https://doi.org/ 10.17586/1023-5086-2020-87-01-16-22
Zhevlakov A.P., Bespalov V.G., Grishkanich A.S., Danilov O.B., Elizarov V.V., Zaviyalov A.K., Iliyinskiy A.A., Kashcheev S.V., Konopelko L.A., Mak A.A. Raman hyperspectral technologies for remote probing of hydrocarbon geochemical fields // Journal of Optical Technology. 2020. V. 87. № 1. P. 11–16. https://doi. org/10.1364/JOT.87.000011
3. Садовников С.А., Романовский О.А., Яковлев С.В., Харченко О.В., Кравцова Н.С. Калибровка и полевые испытания мобильного лидара для дистанционного зондирования метана в атмосфере // Оптический журнал. 2022. Т. 89. № 6. С. 15–24. https://doi. org/10.17586/1023-5086-2022-89-06-15-24
Sadovnikov S.A., Romanovskii O.A., Yakovlev S.V., Kharchenko O.V., Kravtsova N.S. Calibration and field test of mobile lidar for remote sensing of atmo spheric methane // Journal of Optical Technology. 2022. V. 89. № 6. P. 320–326. https://doi.org/10.1364/JOT.89.000320
4. Toochi E.C. Carbon sequestration: how much can forestry sequester CO2? // Forest Res Eng Int J. 2018. V. 2(3). P. 148–150. https://doi.org/10.15406/freij.2018.02.00040
5. Mekonnen H.D., Sintayehu W.D. The role of biodiversity and ecosystem services in carbon sequestration and its implication for climate change mitigation // International Journal of Environmental Sciences and Natural Resources. 2018. V. 11(2). P. 1–9. https://doi.org/10.19080/IJESNR.2018.10.5558
6. Singh J., Khare P., Yadav S., Gupta N., Agarwal A. Carbon sequestration: assessment and application — a review // European journal of pharmaceutical and medical research. 2017. V. 4(5). P. 220–222. https:// www.researchgate.net/publication/317692502
7. Tan Z.T., Zhang Y.T., Schaefer D., Guirui Yu., Liang N., Song Q. An old growth subtropical Asian evergreen forest as a large carbon sink // Atmospheric Environment. 2011. V. 45. P. 1548–1554. https://doi.org/10.1016/j.atmosenv.2010.12.041
8. Kindermann G.E., McCallum I., Fritz S., Obersteiner M. A global forest growing stock, biomass and carbon map based on FAO statistics // Silva Fennica. 2008. V. 42. P. 387–396. https://doi.org/10.14214/sf.244
9. Meng Q., Cieszewski C.J., Maddenb M., Borders B. A linear mixed effects model of biomass and volume of trees using Landsat ETM + images // Forest Ecology and Management. 2007. V. 244. № 1. P. 93–101. https://doi.org/10.1016/j.foreco.2007.03.056
10. Van Tuyl S., Law B.E., Turner D.P., Gitelman A.I. Variability in net primary production and carbon storage in biomass across Oregon forests — an assessment integrating data from forest inventories, intensive sites, and remote sensing // Forest Ecology and Management. 2005. V. 209. № 3. P. 273–291. doi:10.1016/ j.foreco.2005.02.002
11. John E., Bunting P., Hardy A., Silayo D.S., Masunga E.A. Forest monitoring system for Tanzania // Remote Sensing. 2021. V. 13. № 3081. P. 1–29. https://doi. org/10.3390/rs13163081
12. Holzwarth S., Thonfeld F., Abdullahi S., Asam A., Da Ponte Canova E., Gessner U., Huth J., Kraus T., Leutner B., Kuenzer C. Earth observation based monitoring of forests in Germany: A review // Remote Sensing. 2020. V. 12. № 3570. P. 1–43. https://doi.org/10.3390/rs12213570
13. Козодеров В.В., Егоров В.Д. Распознавание типов лесной растительности по гиперспектральным самолетным и многоканальным спутниковым данным высокого пространственного разрешения. Сравнение результатов и оценка их точности // Исследование Земли из космоса. 2019. № 6. C. 89–102. https:// doi.org/10.31857/S0205-96142019689-102
Egorov V.D., Kozoderov V.V. Forest vegetation recognition by aircraft hyperspectral data [in Russian] // Earth Research from Space. 2016. № 3. P. 47–58. https://doi.org/ 10.7868/S0205961416030039
14. Егоров В.Д., Козодеров В.В. Распознавание лесной растительности по самолетным гиперспектральным данным // Исследование Земли из космоса. 2016. № 3. C. 47–58. https://doi.org/ 10.7868/S0205961416030039
Egorov V.D., Kozoderov V.V. Forest vegetation recognition by aircraft hyperspectral data [in Russian] // Earth Research from Space. 2016. № 3. P. 47–58. https://doi.org/ 10.7868/S0205961416030039
15. Immitzer M., Vuolo F., Atzberger C. First experience with Sentinel-2 data for crop and tree species classifications in Central Europe // Remote Sensing. 2016. V. 8. P. 1–27. https://doi.org/10.3390/rs8030166
16. Чабан Л.Н., Березина К.В. Анализ информативности спектральных и текстурных признаков при классификации растительности по гиперспектральным аэроснимкам // Изв. вузов «Геодезия и аэрофотосъемка». 2018. Т. 62. № 1. С. 85–95. https://doi.org/ 10.30533/0536-101X-2018-62-1-85-95
Chaban L.N., Beriozina K.V. Аnalysis of the informativeness of spectral and texture features while classifying the vegetation on hyperspectral airborne imagery [in Russian] // Izvestiya vuzov «Geodeziya i aerofotosyemka». Izvestia vuzov «Geodesy and Aerophotosurveying». 2018. V. 62 (1): 85–95. https://doi. org/ 10.30533/0536-101X-2018-62-1-85-95
17. USGS Digital Spectral Library 06 [Electronic resource]. Access mode: http://speclab.cr.usgs.gov/spectral.lib06. Language English (accessed 17/06/2023).
18. Johns Hopkins University Spectral Library [Electronic resource]. Access mode: https://speclib.jpl.nasa. gov/documents/jhu_desc. Language English (accessed 17/06/2023).
19. Van Tuyl S., Law B.E., Turner D.P., Gitelman A.I. Variability in net primary production and carbon storage in biomass across Oregon forests — an assessment integrating data from forest inventories, intensive sites, and remote sensing // Forest Ecology and Management. 2005. V. 209. P. 273–291. https://doi. org/10.1016/j.foreco.2005.02.002
20. Woolley J.T. Reflectance and transmittance of light by leaves // Plant Physiology. 1971. V. 47. P. 656–662. https://doi.org/ 10.1104/PP.47.5.656
21. Stimson H.C., Breshears D.D., Ustin S.L., Kefauver S.C. Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma // Remote Sensing of Environment. 2005. V. 96. P. 108–118. https://doi.org/10.1016/ j.rse.2004.12.007
22. Mamelin Yu.V., Kopytov G.F., Buzko V.Yu. Studying optical characteristics of diffused light reflecting from naturally senescing leaves of deciduous trees // Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2020. № 5 (92). Р. 72–82. https://doi.org/ 10.18698/1812-3368-2020-5-72-82
23. Зимин М.В., Тутубалина О.В., Голубева Е.И., Рис Г.У. Методика наземного спектрометрирования растений Aрктики для дешифрирования космических снимков // Вестник Московского университета. Серия 5. География. 2014. № 4. C. 34–41.
Zimin M.V., Tutubalina O.V., Golubeva E.I., Rees G.U. Ground spectrometry of arctic plants for the interpretation of space imagery [in Russian] // Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2014. № 4. P. 34–41.
24. Ivanov S.E., Fedotov Yu.V., Belov M.L., Gorodnichev V.A., Shkarupilo A.A. An experimental study of the woody vegetation reflectivity temporal dynamics // IOP Conf. Series: Earth and Environmental Science. 2023. V. 1154. № 012071. P. 1–5. https://doi.org/10.1088/ 1755-1315/1154/1/012071
25. Кринов Е.Л. Спектральная отражательная способность природных образований. АН СССР. Лаборатория аэрометодов. Москва, Ленинград: Изд-во АН СССР, 1947. 272 с.
Krinov E.L. Spectral reflectivity of natural formations. USSR Academy of Sciences. Laboratory of aerometrics. Moscow, Leningrad: Publishing House of the Academy of Sciences of USSR, 1947. 272 p.
26. Мамелин Ю.В., Копытов Г.Ф., Бузько В.Ю. Дискриминация хвойных и лиственных листьев деревьев и кустарников от декоративно-искусственных материалов методом оптической спектроскопии диффузно-го отражения света // Оптика и спектроскопия. 2020. Т. 128. Вып. 2. С. 290–294. https://doi.org/ 10.21883/ OS.2020.02.48981.288-19
Mamelin Y.V., Kopytov G.F., Buz’ko V.Y. Discrimination of coniferous and deciduous leaves of trees and shrubs from decorative and artificial materials by optical diffuse reflectance spectroscopy // Opt. Spectrosc. 2020. V. 128. P. 280–284. https://doi.org/10.1134/ S0030400X20020150
27. Сурин В.Г., Моисеев К.Г., Курашвили А.Е. Возможности использования гипероспектрометра «Лептон» для мониторинга состояния почвенно-растительного комплекса // Агрофизика. 2012. № 4(8). С. 34–44.
Surin V.G., Moiseyev K.G., Kurashvili А.Е. Possibilities of using «Lepton» hyperspectrometer for monitoring the state of the soil and vegetation complex [in Russian] // Agrophysics. 2012. № 4(8). P. 34–44.
28. Козодеров В.В. Егоров В.Д. Распознавание растительности по данным гиперспектрального аэрозондирования // Исследование Земли из космоса. 2011. № 3. С. 40–48.
Kozoderov V.V., Egorov V.D. Vegetation pattern recognition using data of hyperspectral airborne remote sensing [in Russian] // Earth Research from Space. 2011. № 3. P. 40–48.
29. Давыдов В.Ф., Батырев Ю.П. Способ определения состава насаждений // Лесной вестник. 2010. № 7. С. 47–52.
Davydov V.F., Batyrev Yu.P. Method for determining stand composition [in Russian] // Forest bulletin. 2010. № 7. P. 47–52.
30. Касимов Н.С., Голубева Е.И., Лурье И.К., Зимин М.В., Самсонов Т.Е., Тутубалина О.В., Рис У.Г., Михеева А.И., Аляутдинов А.Р. Библиотека спектральных характеристик географических объектов в структуре геопортала МГУ им. М.В. Ломоносова // Вестник Московского университета. Серия 5. География. 2015. № 5. С. 3–8.
Kasimov N.S., Golubeva E.I., Lurie I.K., Zimin M.V., Samsonov T.E., Tutubalina O.V., Rees W.G., Mikheeva A.I., Alyautdinov A.R. Library of spectral characteristics of geographical objects within the structure of the Lomonosov Moscow State University geoportal [in Russian] // Vestnik Moskovskogo universiteta. Seriya 5. Geografiya. 2015. № 5. P. 3–8.
31. Голубева Е.И., Зимин М.В., Рис У.Г., Тутубалина О.В., Тимохина Ю.И. Дистанционные методы изучения состояния растительности севера (на примере Кольского полуострова) // Проблемы окружающей среды и природных ресурсов. 2020. № 5. С. 47–51. https:// doi.org/10.36535/0235-5019-2020-05-4
Golubeva E.I., Zimin M.V., Rees W.G., Tutubalina O.V., Timokhina Yu.I. Remote sensing methods for studying the state of northern vegetation (case study of Kola peninsula) // Environmental and natural resource problems. 2020. № 5. P. 47–51. https://doi. org/ 10.36535/0235-5019-2020-05-4
32. Голубева Е.И., Тимохина Ю.И., Зимин М.В. Отражение техногенного воздействия в биохимических особенностях и спектральных образах березы пушистой (Betula pubescens Ehrh S.L.) (Кольский полуостров) // VII Всероссийская конференция (с международным участием) "Аэрокосмические методы и геоинформационные технологии в лесоведении, лесном хозяйстве и экологии", посвящена памяти выдающегося ученого-лесовода, академика РАН А.С. Исаева. 22–24 апреля 2019. http://cepl.rssi.ru/wp-content/ uploads/2019/05/АКС_ГИС_2019_Голубева.pdf.
Golubeva E.I., Timokhina Yu.I., Zimin M.V. Reflection of technogenic influence in biochemical features and spectral images of fluffy birch (Betula pubescens Ehrh S.L.) (Kola peninsula) // Report at the VII AllRussian Conference (with international participation) "Aerospace methods and geoinformation technologies in forestry, forestry and ecology", dedicated to the memory of the outstanding scientist-forester, academician of the Russian Academy of Sciences A.S. Isaev. 22–24 April 2019. http://cepl.rssi.ru/wp-content/uploads/2019/05/АКС_ГИС_2019_Голубева.pdf.
33. Алтынов А.Е., Малинников В.А., Попов С.М., Стеценко А.Ф. Спектрометрирование ландшафтов. М.: Изд. МИИГАиК, 2010. 120 с.
Altynov А.Е., Malinnikov V.А., Popov С.М., Stetsenko А.F. Landscape spectrometry [in Russian]. Moscow: MIIGAiK Publ., 2010. 120 p.
34. Hill J., Buddenbaum H., Townsend P.A. Imaging spectroscopy of forest ecosystems: Perspectives for the use of space borne hyperspectral earth observation systems // Surveys in Geophysics. 2019. 40. P. 553–588. https://doi.org/10.1007/s10712-019-09514-2
35. Rautiainen M., Lukeš P., Homolová L., Hovi A., Pisek J., Mõttus M. Spectral properties of coniferous forests: A review of in situ and laboratory measurements // Remote Sens. 2018. V. 10(207). P. 1–28. https://doi/ org/10.3390/rs10020207
36. Yel S.G., Gormus E.T. Exploiting hyperspectral and multispectral images in the detection of tree species: A review // Front. Remote Sens. 2023. V. 4(1136289). P. 1–13. https://doi.org/10.3389/frsen.2023.1136289
37. Hejtmánek J., Stejskal J., Čepl J., Lhotáková Z., Korecký J., Krejzková A., Dvorák J., Gezan S.A. Revealing the complex relationship among hyperspectral reflectance, photosynthetic pigments, and growth in norway spruce ecotypes // Front. Plant Sci. 2022. V. 13(721064). P. 1–16. https://doi.org/10.3389/fpls.2022.721064
38. Forsstrom P.R., Hovi A., Ghielmetti G., Schaepman M.E., Rautiainen M. Multi-angular reflectance spectra of small single trees // Remote Sensing of Environment. 2021. V. 255 (112302). P. 1–14. https://doi.org/10.1016/ j.rse.2021.112302
39. Shang X., Chisholm L.A. Classification of australian native forest species using hyperspectral remote sensing and machine-learning classification algorithms // IEEE Journal of selected topics in applied earth observations and remote sensing. 2014. V. 7 (6). P. 2481–2488. https://doi.org/10.1109/JSTARS.2013. 2282166
40. Modzelewska A., Fassnacht F.E., Stereńczak K. Tree species identification within an extensive forest area with diverse management regimes using airborne hyperspectral data // Int J Appl Earth Obs Geoinformation. 2020. V. 84. 101960. P. 1–13. https://doi. org/10.1016/j.jag.2019.101960
41. Van Aardt J.A.N., Wynne R.H. Spectral separability among six southern tree species // Photogrammetric Engineering & Remote Sensing. 2001. V. 67(12). P. 1367–1375. https://www.researchgate.net/publication/216859278
42. Dabiri Z., Lang S. Comparison of independent component analysis, principal component analysis, and minimum noise fraction transformation for tree species classification using APEX hyperspectral imagery // ISPRS Int. J. Geo-Inf. 2018. V. 7. 488. P. 1–26. https:// doi.org/10.3390/ijgi7120488
43. Dadon A., Mandelmilch M., Ben-Dor E., Sheffer E. Sequential PCA-based classification of mediterranean forest plants using airborne hyperspectral remote sensing // Remote Sens. 2019. V. 11. 2800. P. 1–19. https://doi.org/10.3390/rs11232800
44. Zhou W., Tang J., Qian Z., Wang J., Guo H. Deeplyrecursive convolutional neural network for Raman spectra identification // RSC Adv. 2022. V. 12. P. 5053–5061. https://doi.org/10.1039/D1RA08804A
45. Басс Л.П., Кузьмина М.Г., Николаева О.В. Cверточные нейронные сети c глубоким обучением в задачах обработки гиперспектральных спутниковых данных // Препринты ИПМ им. М.В. Келдыша. 2018. № 282. 32 с. https://doi.org/10.20948/prepr-2018-282
Bass L.P., Kuzmina M.G., Nikolaeva О.V. Deep convolutional neural networks in hyperspectral remote sensing data processing // Preprints of the IPM named after M.V. Keldysh. 2018. № 282. 32 p. https://doi. org/10.20948/prepr-2018-282
46. Xie S., Ren G., Zhu J. Application of a new one-dimensional deep convolutional neural network for intelligent fault diagnosis of rolling bearings // Science Progress. 2020. V. 103(3). P. 1–18. https://doi.org/10.1177/ 0036850420951394
47. Cooled –20 ºС NIR512-2.5 Spectrometer [Electronic resource]. Access mode: URL: https://www.optosky.net/atp8000.html. Language English (accessed 17/06/2023).
48. Fedotov Yu.V., Ivanov S.E., Belov M.L., Gorodnichev V.A. Experimental study of variations in the reflection spectra of leaves and needles depending on the conditions for obtaining samples // E3S Web of Conferences. 2024. V. 486. 07016. P. 1–6. https://doi. org/10.1051/e3sconf/202448607016