DOI: 10.17586/1023-5086-2025-92-12-77-83
УДК: 535.211
Облучение золотых плёнок остросфокусированным пучком фемтосекундного лазера с различными распределениями интенсивности
Гулинян В.А., Агеев Э.И., Гремилов М.А., Зуев Д.А. Облучение золотых плёнок остросфокусированным пучком фемтосекундного лазера с различными распределениями плотности энергии // Оптический журнал. 2025. Т. 92. № 12. С. 77–83. http://doi.org/10.17586/1023-5086-2025-92-12-77-83
Gulinyan V.A., Ageev E.I., Gremilov M.A., Zuev D.A. Irradiation of gold films with an acutely focused femtosecond laser beam with different intensity distributions [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 12. P. 77–83. http://doi.org/10.17586/1023-5086-2025-92-12-77-83
Предмет исследования. Золотые игольчатые наноструктуры, созданные одиночными лазерными импульсами с гауссовым и тороидальным распределениями поверхностной плотности энергии. Цель работы. Создание игольчатых структур и сравнение энергетической эффективности этих структур при различных профилях распределения поверхностной плотности энергии в пучке. Метод. Прямая лазерная запись наноструктур одиночными лазерными импульсами с гауссовым профилем плотности энергии и с тороидальным, полученным с помощью вихревой пластинки. Основные результаты. Созданы золотые наноструктуры с использованием двух видов профиля распределения плотности энергии, а также получены спектры рассеяния для данных структур. Практическая значимость. Массивы полученных игольчатых наноструктур будут использованы как структурный элемент для создания биосенсора на основе оптически резонансных структур из золота.
золотые плёнки, наноджеты, нанобампы, лазерно-индуцированная генерация, вихревая пластинка
Благодарность:исследование выполнено при поддержке гранта Российского научного фонда № 24-72-10075, https://rscf.ru/project/24-72-10075/
Коды OCIS: 220.4241, 290.5820, 310.6845
Список источников:1. Vilkevičius K., Tsibidis George D., Selskis Algirdas et al. Formation of highly tunable periodic plasmonic structures on gold films using direct laser writing // Advanced Optical Materials. 2024. P. 2400172. https://doi.org/10.1002/adom.202400172
2. Meshcheryakov Y.P., Bulgakova N.M. Thermoelastic modeling of microbump and nanojet formation on nanosize gold films under femtosecond laser irradiation // Applied Physics A. 2006. V. 82. № 2. P. 363–368. http://dx.doi.org/10.1007/s00339-005-3319-9
3. Pavlov D., Syubaev S., Kuchmizhak A. et al. Direct laser printing of tunable IR resonant nanoantenna arrays // Applied Surface Science. 2019. V. 469. P. 514–520. https://doi.org/10.1016/j.apsusc.2018.11.069
4. Toyoda K., Katsuhiko M., Nobuyuki A. et al. Using optical vortex to control the chirality of twisted metal nanostructures // Nano letters. 2012. V. 12. № 7. P. 3645–3649. https://doi.org/10.1021/nl301347j
5. Kuchmizhak A., Vitrik O., Kulchin Yu. et al. Laser printing of resonant plasmonic nanovoids // Nanoscale. 2016. V. 8. № 24. P. 12352–12361. https://doi.org/10.1039/C6NR01317A
6. Wang X.W., Kuchmizhak A.A., Li X. et al. Laserinduced translative hydrodynamic mass snapshots: noninvasive characterization and predictive modeling via mapping at nanoscale // Physical Review Applied. 2017. V. 8. № 4. P. 044016. https://doi.org/10.1103/PhysRevApplied.8.044016
7. Nakata Y., Koji T., Noriaki M. et al. Solid–liquid–solid process for forming free-standing gold nanowhisker superlattice by interfering femtosecond laser irradiation // Applied surface science. 2013. V. 274. P. 27–32. https://doi.org/10.3390/nano11020305
8. Kuznetsov A.I., Unger C., Koch J. et al. Laser-induced jet formation and droplet ejection from thin metal films // Applied Physics A. 2012. V. 106. P. 479–487. https://doi.org/10.1007/s00339-011-6747-8
9. Pavlov D.V., Zhizhchenko A.Y., Honda M. et al. Multipurpose nanovoid array plasmonic sensor produced by direct laser patterning // Nanomaterials. 2019. V. 9. № 10. P. 1348. https://doi.org/10.3390/nano9101348
10. Kuznetsov A.I., Koch J., Chichkov B.N. Nanostructuring of thin gold films by femtosecond lasers // Applied Physics A. 2009. V. 94. P. 221–230. https://doi.org/10.1007/s00339-008-4859-6
11. Ivanov D.S., Zhigilei L.V. Combined atomistic-continuum modeling of short-pulse laser melting and disintegration of metal films // Physical review B. 2003. V. 68. № 6. P. 064114. https://doi.org/10.1103/PhysRevB.68.064114
12. Nakata Y., Miyanaga N., Okada T. Effect of pulse width and fluence of femtosecond laser on the size of nanobump array // Applied surface science. 2007. V. 253. № 15. P. 6555–6557. https://doi.org/10.1016/j.apsusc.2007.01.080
13. Koch J., Korte F., Bauer T. et al. Nanotexturing of gold films by femtosecond laser-induced melt dynamics // Applied Physics A. 2005. V. 81. P. 325–328. https://doi.org/10.1007/s00339-005-3212-6
14. Naghilou A., He M., Schubert J. et al. Femtosecond laser generation of microbumps and nanojets on single and bilayer Cu/Ag thin films // Physical Chemistry Chemical Physics. 2019. V. 21. № 22. P. 11846–11860. https://doi.org/10.1039/C9CP02174D
15. Syubaev S., Zhizhchenko A., Porfirev A. et al. Direct laser printing of chiral plasmonic nanojets by vortex beams // Optics Express. 2017. V. 25. № 9. P. 10214–10223. https://doi.org/10.48550/arXiv.1702.07891
16. Kawagoe S., Nakamura R., Tasaki R. et al. Microfabrication of Au film using optical vortex beam // Journal of Laser Micro Nanoengineering. 2019. V. 14. № 1. P. 31–34. https://doi.org/10.2961/jlmn.2019.01.0006
17. Syubaev S., Zhizhchenko A., Vitrik O. et al. Chirality of laser-printed plasmonic nanoneedles tunable by tailoring spiral-shape pulses // Applied Surface Science. 2019. V. 470. P. 526–534. https://doi.org/10.1016/j.apsusc.2018.11.128
18. Liu J.M. Simple technique for measurements of pulsed Gaussian-beam spot sizes // Optics Letters. 1982. V. 7. № 5. P. 196–198. https://doi.org/10.1364/OL.7.000196
en