УДК: 535.37: 535-31: 621.327
Barrier-discharge excilamps: history, operating principle, prospects
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тарасенко В.Ф., Соснин Э.А. Эксилампы барьерного разряда: история, принцип действия, перспективы // Оптический журнал. 2012. Т. 79. № 10. С. 58–65.
Tarasenko V. F., Sosnin E. A.” Barrier-discharge excilamps: history, operating principle, prospects [in English] // Opticheskii Zhurnal. 2012. V. 79. № 10. P. 58–65.
V. F. Tarasenko and E. A. Sosnin, "Barrier-discharge excilamps: history, operating principle, prospects∗∗To the radiant memory of Galina Arkad’evna Volkova (1935–2011).," Journal of Optical Technology. 79(10), 653-658 (2012). https://doi.org/10.1364/JOT.79.000653
Описан принцип работы современных источников спонтанного ультрафиолетового и вакуумного ультрафиолетового излучений на основе эксимерных и эксиплексных молекул - эксиламп. Даны ссылки на пионерские работы, в которых для возбуждения излучения эксиламп используется барьерный разряд. Рассмотрены конструкции эксиламп барьерного разряда и облучающих модулей на их основе, эффективные режимы работы, спектры излучения наиболее перспективных эксиламп. Приведены примеры применения эксиламп барьерного разряда в науке и технике.
barrier discharge, excimer, exiplex, exilampa
OCIS codes: 260.7210, 230.6080, 240.6670, 350.3850, 350.5130, 160.4670, 310.0310
References:1. P. Stevens and S. Hutton, “Radiation life-time of the pyren dimer and the possible role of excited dimer in energy transfer processes,” Nature 186, 1045 (1960).
2. J. B. Birks, The Exciplex (Academic Press, New York, 1975), pp. 39–74.
3. A. M. Bo˘ıchenko, V. F. Tarasenko, E. A. Fomin, and S. I. Yakovlenko, “Broad-band continua in inert gases and their mixtures with halides,” Kvant. Elektron. (Moscow) 20, No. 1, 7 (1993). [Quantum Electron. 23, 3 (1993)].
4. G. A. Volkova, N. N. Kirillova, E. N. Pavlovskaya, I. V. Podmoshenski˘ı, and A. V. Yakovleva, “Lamp for illumination in the vacuum ultraviolet region,” Inventor’s Certificate 972 249, Byull. Izobr. No. 41, 179 (1982).
5. G. A Volkova, N. N. Kirillova, E. N. Pavlovskaya, and A. V. Yakovleva, “A VUV barrier-discharge lamp in inert gases,” Zh. Prikl. Spektrosk. 41, 681 (1984).
6. B. Eliasson and U. Kogelschatz, “UV excimer radiation from dielectric-barrier discharges,” Appl. Phys. B 46, 299 (1988).
7. H. Esrom and U. Kogelschatz, “Modification of surfaces with new excimer UV sources,” Thin Solid Films 218, 231 (1992).
8. I. W. Boyd, J.-Y. Zhang, and U. Kogelschatz, “Development and applications of UV excimer lamps,” in Photo-Excited Processes, Diagnostics and Applications, A. Peled, ed. (Kluwer Academic Pub, 2003), pp. 161–199.
9. M. V. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, D. V. Shitts, and M. V. Erofeev, “Excilamps: efficient sources of spontaneous UV and VUV radiation,” Usp. Fiz. Nauk 173, 201 (2003). [Phys. Usp. 46, 193 (2003)].
10. E. A. Sosnin, T. Oppenl¨ander, and V. F. Tarasenko, “Applications of capacitive and barrier discharge excilamps in photoscience,” J. Photochem. Photobiol. C: Rev. 7, 145 (2006).
11. E. A. Sosnin, I. V. Sokolova, and V. F. Tarasenko, “Development and applications of novel UV and VUV excimer and exciplex lamps for the experiments in photochemistry,” in Photochemistry Research Progress, A. Sanchez and S. J. Gutierrez, eds. (Nova Science Publishers, 2008), pp. 225–269.
12. A. M. Bo˘ıchenko, M. I. Lomaev, A. N. Panchenko, E. A. Sosnin, and V. F. Tarasenko, Ultraviolet and Vacuum Ultraviolet Excilamps: Physics, Engineering, and Applications (STT, Tomsk, 2001).
13. G. N. Gerasimov, B. E. Krylov, A. V. Loginov, and S. A. Shchukin, “Ultraviolet radiation of excited molecules of inert gases,” Usp. Fiz. Nauk 162, No. 5, 123 (1992). [Phys. Usp. 35, 400 (1992)].
14. O. K. Shuaibov, I. V. Shevera, L. L. Shimon, and E. A. Sosnin, Suchasni dzherela ul’trafioletovogo viprominyuvannya: rozrobka ta zastosuvannya. Uzhgorod–Tomsk (Uzhgorods’ki˘ı natsional’ni˘ı universitet, Toms’ki˘ı derzhavni˘ı universitet, 2006).
15. E. Arnold, R. Driskemper, and S. Reber, “High-power excimer sources,” in Proceedings of the Eighth International Symposium on Science and Technology of Light Sources (LS-8), Greifswald, Germany, 30 Aug.–3 Sept. 1998, IL12, pp. 90–98.
16. S. M. Avdeev, E. A. Sosnin, V. S. Skakun, V. F. Tarasenko, and D. V. Shitts, “Two-band emission source based on a three-barrier KrCl-XeBr excilamp,” Pis’ma Zh. Tekh. Fiz. 34, No. 17, 1 (2008). [Tech. Phys. Lett. 34, 725 (2008)].
17. M. I. Lomaev, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, and D. V. Shitts, “Sealed efficient excilamps excited by a capacitive discharge,” Pis’ma Zh. Tekh. Fiz. 25, No. 21, 27 (1999). [Tech. Phys. Lett. 25, 858 (1999)].
18. Sz. Beleznai, G. Mihajlik, A. Agod, I. Maros, R. Juhasz, Zs. Nemeth, L. Jakab, and P. Richter, “High-efficiency dielectric barrier Xe discharge lamp: theoretical and experimental investigations,” J. Phys. D: Appl. Phys. 39, 3777 (2006).
19. A. Schreiber, B. Kuhn, E. Arnold, F.-J. Schilling, and H.-D. Witzke, “Radiation resistance of quartz glass for VUV discharge lamps,” J. Phys. D: Appl. Phys. 38, 3242 (2005).
20. F. Vollkommer and L. Hitzschke, “Dielectric barrier discharge,” in Proceedings of the Eighth International Symposium on Science and Technology of Light Sources (LS-8), Germany, Greifswald, 1998, pp. 51–60.
21. B. M. Smirnov, “Excimeric molecules,” Usp. Fiz. Nauk 139, No. 1, 53 (1983). [Phys. Usp. 26, 31 (1983)].
22. S. M. Avdeev, E. A. Sosnin, and V. F. Tarasenko, “Optical characteristics of plasma of I∗2, Cl∗2, and Br∗2 halogen dimer barrier-discharge excilamps,” Opt. Spektrosk. 103, 554 (2007). [Opt. Spectrosc. 103, 526 (2007)].
23. O. N. Cha˘ıkovskaya, “Spectroluminescence properties, photophysical and photochemical processes in hydroxyaromatic compounds under UV excitation,” Author’s abstract of doctoral dissertation (Tomsk: TGU, 2007).
24. T. Oppenl¨ander, Photochemical Purification of Water and Air (Wiley, Weinheim, 2003).
25. G. G. Matafonova, N. Christofi, V. B. Batoev, and E. A. Sosnin, “Degradation of chlorophenols in aqueous media using UV XeBr excilamp in a flow reactor,” Chemosphere 70, 1124 (2008).
26. Real-time monitor for polycyclic aromatic hydrocarbons (PAH) ecochem PAS 2000 [Elektronic resource]. URL: http://www.ecochem.biz/PAH/PAS2000.htm.
27. G. E. Gerasimov, B. E. Krylov, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, “Emission in argon and krypton at 147 nm excited by runaway-electron-induced diffusion discharge,” Kvant. Elektron. (Moscow) 40, 241 (2010). [Quantum Electron. 40, 241 (2010)].
28. S. M. Avdeev, G. N. Zvereva, and E. A. Sosnin, “Investigation of the conditions of efficient I∗2 (342 nm) luminescence in a barrier discharge in a Kr-I2 mixture,” Opt. Spektrosk. 103, 946 (2007). [Opt. Spectrosc. 103, 910 (2007)].