ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 621.397.132

Wavelet segmentation of color texture images

For Russian citation (Opticheskii Zhurnal):

Фисенко В.Т., Фисенко Т.Ю.  Метод вейвлетной сегментации цветных текстурных изображений // Оптический журнал. 2012. Т. 79. № 11. С. 21–27.

Fisenko V. T., Fisenko T. Yu. Wavelet segmentation of color texture images  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 11. P. 21–27.

For citation (Journal of Optical Technology):

V. T. Fisenko and T. Yu. Fisenko, "Wavelet segmentation of color texture images," Journal of Optical Technology. 79(11), 693-697 (2012).  https://doi.org/10.1364/JOT.79.000693

Abstract:

This paper discusses methods of segmenting complex texture images. A method of multiscale wavelet segmentation of color textures has been developed, based on their characteristic attributes and chromaticity characteristics. Multiscale image analysis is used to form the texture attributes. The method makes it possible to combine estimates of the texture characteristics on the basis of the discrete wavelet transformation and the color characteristics of the texture. Estimates of the segmentation efficiency are obtained from the number of iterations of the wavelet transformation, the type of wavelet basis, the form of the color-coordinate space, and the size of the filtering window for estimating the segmentation attributes.

Keywords:

texture, color, segmentation, wavelet analysis

OCIS codes: 100.2960, 100.7410, 100.2000, 330.6110

References:

1. V. T. Fisenko and T. Yu. Fisenko, “Segmentation of color texture images,” in International Conference, Applied Optics, Collection of Papers, Vol. 3, St. Petersburg, 2008, pp. 359–363.
2. V. T. Fisenko and T. Yu. Fisenko, Computer Processing and Image Recognition. A Textbook (SPbGU ITMO, St. Petersburg, 2008).
3. R. M. Haralick, “Statistical and structural approaches to texture,” Proc. IEEE 67, 786 (1979).
4. S. Malla, Wavelets in Signal Processing (Mir, Moscow, 2005).
5. A. V. Leonenkov, Fuzzy Modelling in the MATLAB and fuzzyTECH medium (BKhV-Peterburg, St. Petersburg, 2005).
6. V. T. Fisenko and T. Yu. Fisenko, “Method of automatically analyzing color images,” Opt. Zh. 70, No. 9, 18 (2003). [J. Opt. Technol. 70, 637 (2003)].
7. B.Manjunath, J.-R. Ohm, V. Vasudevan, and A. Yamada, “Color and texture descriptors,” IEEE Trans. Circuits Syst. Video Technol. 11, 703 (2001).
8. P. Brodatz, A Photographic Album for Artists and Designers (Dover, New York, 1966).
9. Vision Texture (electronic resource), http://vismod.media.mit.edu/vismod/ imagery/VisionTexture/vistex.html (2012).
10. University of Oulu texture database (electronic resource), http://www.outex.oulu.fi (2012).