УДК: 681.3.01: 681.787
Recursion algorithms for processing video information in optical-coherence-tomography systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
M. A. Volynskiĭ, I. P. Gurov, and E. V. Zhukova, "Recursion algorithms for processing video information in optical-coherence-tomography systems," Journal of Optical Technology. 79(11), 698-703 (2012). https://doi.org/10.1364/JOT.79.000698
This paper discusses the features of signal formation in optical-coherence-tomography systems and recursion algorithms for dynamic processing of low-coherence interferometric signals. Estimates are given of the accuracy and speed of algorithms for extended Kalman filtering and nonlinear Markov filtering as applied to signal analysis in wide-field optical coherence tomography.
small coherence interferometry, optical coherence tomography, video information, recurrent processing algorithms signals
OCIS codes: 100.3175, 110.4500
References:1. I. P. Gurov, “Optical coherence tomography: principles, problems, and prospects,” in Problems of Coherent and Nonlinear Optics, I. P. Gurov and S. A. Kozlov, eds. (SPbGU ITMO, St. Petersburg, 2004), pp. 6–30.
2. P. H. Tomlins and R. K. Wang, “Theory, developments and applications of optical coherence tomography,” J. Phys. D: Appl. Phys. 38, 2519 (2005).
3. W. Drexler and J. G. Fujimoto, eds., Optical Coherence Tomography. Technology and Applications (Springer-Verlag, Berlin, 2008).
4. V. N. Vasil’ev and I. P. Gurov, “Comparative analysis of the methods of optical coherence tomography,” Izv. Vyssh. Uchebn. Zaved. Prib. 50, No. 7, 30 (2007).
5. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43, 2874 (2004).
6. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14, 726 (2006).
7. I. Gurov and M. Volynsky, “Interference-fringe analysis based on recursion computational algorithms,” Opt. Lasers Eng. 50, 514 (2012).
8. V. S. Pugachev and I. N. Sinitsyn, Stochastic Differential Systems. Analysis and Filtering (Nauka, Moscow, 1990).
9. I. Gurov, E. Ermolaeva, and A. Zakharov, “Analysis of low-coherence interference fringes by the Kalman filtering method,” J. Opt. Soc. Am. A 21, 242 (2004).
10. I. Gurov, M. Volynsky, and A. Zakharov, “Evaluation of multilayer tissues in optical coherence tomography by the extended-Kalman-filtering method,” Proc. SPIE 6734, 6734 (2007).
11. I. P. Gurov and A. S. Zakharov, “Analysis of characteristics of interference fringes by nonlinear Kalman filtering,” Opt. Spektrosk. 96, 210 (2004). [Opt. Spectrosc. 96, 175 (2004)].
12. I. Gurov, M. Volynsky, and E. Vorobeva, “Dynamic wavefront evaluation in phase shifting interferometry based on recurrence fringe processing,” AIP Conf. Proc. 1236, 479 (2010).
13. J. L. Doob, Stochastic Processes (Wiley, New York, 1953; Izd. Inostr. Lit., Moscow, 1956).
14. M. S. Yarlykov and M. A. Mironov, Markov Theory of the Estimation of Random Processes (Radio i Svyaz’, Moscow, 1993).
15. I. Gurov and D. Sheynihovich, “Interferometric data analysis based on Markov non-linear filtering methodology,” J. Opt. Soc. Am. A 17, 21 (2000).