ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 533.72 533.735 535.243

Numerical modelling of thermal and gas-dynamic processes in a two-stage atomizer for analytical spectrometry

For Russian citation (Opticheskii Zhurnal):

Нагулин К.Ю., Цивильский И.В., Назмиев Р.И., Гильмутдинов А.Х. Численное моделирование термических и газодинамических процессов в двустадийном атомизаторе для аналитической спектрометрии // Оптический журнал. 2012. Т. 79. № 12. С. 46–55.

 

Nagulin K. Yu., Tsivil’skiĭ I. V., Nazmiev R. I., Gil’mutdinov A. Kh. Numerical modelling of thermal and gas-dynamic processes in a two-stage atomizer for analytical spectrometry  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 12. P. 46–55.

For citation (Journal of Optical Technology):

K. Yu. Nagulin, I. V. Tsivil’skiĭ, R. I. Nazmiev, and A. Kh. Gil’mutdinov, "Numerical modelling of thermal and gas-dynamic processes in a two-stage atomizer for analytical spectrometry," Journal of Optical Technology. 79(12), 781-788 (2012). https://doi.org/10.1364/JOT.79.000781

Abstract:

Based on a numerical solution of the Navier–Stokes equations and the equations of molecular kinetics, a complete computer model of a two-stage atomizer has been developed for analytical spectrometry, consisting of a graphite crucible evaporator and a helical atomizer. The model correctly takes into account the heating of the atomizer by an electric current, the gas dynamics, and nonsteady-state thermal-exchange processes, as well as the evaporation and condensation of the atoms of the test substance. The developed model has been experimentally tested, and the results of the modelling agree well with the experimental data.

Keywords:

computational gas dynamics, thermal decomposition of substances, atomic absorption spectroscopy, electrothermal atomization

OCIS codes: 020.1335, 300.1030, 300.6210

References:

1. B. V. L’vov, Atomic Absorption Spectral Analysis (Nauka, Moscow, 1966).
2. I. L. Grinshtein, Y. A. Vil’pan, L. A. Vasilieva, and V. A. Kopeikin, “Reduction of matrix interference during the atomic absorption determination of lead and cadmium in strongly interfering matrix samples using a two-step atomizer with vaporizer purging,” Spectrochim. Acta Part B 54, 745 (1999).
3. V. N. Oreshkin, G. I. Tsizin, and G. L. Vnukovskaya, “Sorption-atomic- absorption determination of tracks of metals (Ag, Bi, In, Cd, Pb and Tl) in natural waters, using a two-chamber powder atomizer,” Zh. Analit. Khimii 49, 755 (1994).
4. J. A. Holcombe and M. T. Sheehan, “Graphite furnace modification for second-surface atomization,” Appl. Spectrosc. 36, 631 (1982).
5. Yu. A. Zakharov and O. B. Kokorina, “Method of spectral analysis,” Russian Patent No. 2 274 848 (2004).
6. A. Kh. Gilmutdinov, “Electrothermal atomization means for analytical spectrometry,” U. S. Patent No. 5 981 912 (1999).
7. K. Yu. Nagulin, A. Kh. Gil’mutdinov, and L. A. Grishin, “Two-stage atomizer for electrothermal atomic-absorption spectroscopy. Dynamics of spatial temperature distribution,” Zh. Analit. Khimii 58, 439 (2003).
8. A. Kh. Gil’mutdinov and K. Yu. Nagulin, “Method of elementary analysis of a substance and a device for implementing it,” Russian Patent No. 2 370 755 (2007).
9. Sh. F. Araslanov, A. Kh. Gilmutdinov, and M. Sperling, “3D numerical simulation of gas flows in transversely heated graphite tube atomizers,” in CD—Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering, Barcelona, ECCOMAS, 2000, p. 20.
10. A. Gilmutdinov, Sh. Araslanov, R. Ibragimov, A. Staroverov, and M. Salakhov, “Fundamental description of spectroanalytical inductively coupled plasmas,” in Third Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2006, p. 17.
11. A. A. Samarski˘ı and Yu. P. Popov, Difference Methods of Solving Problems of Gas Dynamics (Nauka, Moscow, 1980).
12. C. A. J. Fletcher, Computational Techniques in Fluid Dynamics, Vol. 1 (Springer-Verlag, Berlin, 1990; Mir, Moscow, 1991).

13. A. Kh. Gil’mutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Atomicabsorption spectrometry with spatial resolution,” Usp. Khim. 75, 339 (2006).
14. Z. Queiroz, P. Oliveira, J. Nobrega, C. Silva, I. Rufini, S. Sousa, and F. Krug, “Surface and gas-phase temperatures of a tungsten-coil atomizer,” Spectrochim. Acta Part B 57, 1789 (2002).
15. K. Yu. Nagulin and A. Kh. Gil’mutdinov, “Recording system with spatial resolution for atomic-absorption spectrophotometers,” Opt. Zh. 66, No. 7, 99 (1999). [J. Opt. Technol. 66, 662 (1999)].
16. A. Kh. Gilmutdinov, K. Yu. Nagulin, and M. Sperling, “Spatially resolved atomic absorption analysis,” J. Analyt. At. Spectrom. 15, 1375 (2000).
17. X. Hou, K. E. Levine, A. Salido, B. T. Jones, M. Ezer, S. Elwood, and J. B. Simeonsson, “Tungsten-coil devices in atomic spectrometry: absorption, fluorescence, and emission,” Analyt. Sci. 17, 175 (2001).
18. G. L. Donati, M. H. Gonzales, J. A. Nobrega, and B. T. Jones, “Multi-wavelength determination of cobalt by tungsten coil atomic emission spectrometry,” Analyt. Lett. 43, 1723 (2010).