УДК: 621.383
Theoretical investigation and analysis of time response in heterostructure Geiger-APD
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Mehdi Dehghan. Теоретическое исследование и анализ временного отклика в гетероструктуре APD-Гейгер // Оптический журнал. 2012. Т. 79. № 12. С. 56–61.
Mehdi Dehghan. Theoretical investigation and analysis of time response in heterostructure Geiger-APD [in English] // Opticheskii Zhurnal. 2012. V. 79. № 12. P. 56–61.
Mehdi Dehghan, "Theoretical investigation and analysis of time response in heterostructure Geiger-APD," Journal of Optical Technology. 79(12), 794-798 (2012). https://doi.org/10.1364/JOT.79.000794
In this paper the mean current impulse response and standard deviation in Geiger mode for heterostructure APD are determined. The model is based on recurrence equations. These equations are solved numerically to calculate the mean current impulse response and standard deviation as a function of time. In this structure we illustrate the multiplication region with different ionization threshold energies that the impact ionization of the injected carrier type is localized and the feedback carrier type is suppressed. In fact for this structure, better control of spatial distribution of impact ionization for both injected and feedback carriers can be achieved. By enhancing the control of impact-ionization position, the structure achieved to high gain and very low noise.
Avalanche Photodiode, Geiger mode, I2E structure, Dark Count
OCIS codes: 040.1345
References:1. Tan C.H., David J.P.R., Plimmer S.A., Rees G.J., Tozer R.C., Grey R. // IEEE Trans. Electron Devices. 2001. V. 48. P. 1310–1317.
2. Groves C., Chia C.K., Tozer R.C., David J.P.R., Rees G.J. // IEEE J. Quantum Electron. 2005. V. 41. P. 70–75.
3. Chin R., Holonyak N., Stillman G.E., Tang J.Y., Hess K. // Electron. Lett. 1980. V. 16. P. 467–469.
4. Chia C.K., Ng B.K., David J.P.R., Rees G.J., Tozer R.C., Hopkinson M., Airey R.J., Robson P.N. // J. Appl. Phys. 2003. V. 94. P. 2631–2637.
5. Kown O. // IEEE J. Quantum Electron. 2003. V. 39. P. 1287–1296.
6. Groves C., Tan C.H., David J.P.R., Ress G.J., Hayat M.M. // IEEE Trans. Electron Devices. 2005. V. 52. P. 1527–1534.
7. Moll J.L., Meyer N. Solid State Electron. 1961. V. 3. P. 155–161.
8. Saleh M.A., Hayat M.M., Saleh B.E.A., Teich M.C. IEEE Trans. Electron Devices. 2000. V. 47. P. 625–633.
9. Plimmer S.A., David J.P.R., Grey R., Rees G.J. IEEE Trans. Electron Devices. 2000. V. 47. P. 1089–1097.
10. Tan C.H., Hambleton P.J., David J.P.R., Tozer R.C., Rees G.J., Lightwave J. Technol. 2003. V. 21. P. 155–159.
11. Hayat M.M., Saleh B.E.A., Lightwave J. Technol. 1992. V. 10. P. 1415–1425.
12. Chen W., Liu Sh. IEEE Journal of Quantum Electronics. 1996. V. 32. 2105–2111.
13. Wang S., Sidhu R., Zheng X.G., Li X., Sun X., Holmes A.L., Jr., Campbell J.C. IEEE Photon. Technol. Lett. 2001. V. 13. P. 1341–1348.