УДК: 621.384.32
Analysis of ways to enhance the efficiency of ground-based optoelectronic observation complexes
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Baloev V. A, Mishanin S. S., Yakubson S. E., Ovsyannikov V. A., Filippov V. L., Yatsyk V. S. Analysis of ways to enhance the efficiency of ground-based optoelectronic observation complexes [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 3. P. 22–32.
V. A. Baloev, S. S. Mishanin, S. E. Yakubson, V. A. Ovsyannikov, V. L. Filippov, and V. S. Yatsyk, "Analysis of ways to enhance the efficiency of ground-based optoelectronic observation complexes," Journal of Optical Technology. 79 (3), 142-149 (2012). https://doi.org/10.1364/JOT.79.000142
This paper discusses methods of enhancing the efficiency of ground-based optoelectronic viewing complexes, based on the use of supplementary revealing signs of objects and the spectral adaptation of the channels of the complexes. It is concluded that it is expedient to implement an active-pulse range–brightness channel in these complexes that records the three-dimensional shape of objects and the retroreflected radiation of their optoelectronic systems.
optoelectronic system, unmasking features of objects, image, efficiency
OCIS codes: 110.3000
References:1N. N. Mordvin and G. N. Popov, “Concept of the construction of universal-type optoelectronic observation devices,” Izv. Vyssh. Uchebn. Zaved. Ser. Prib. No. 2, 13 (2007).
2G. Filatov, S. Yakubson, and N. Beglova, “Development of mobile ground-based complexes of optoelectronic facilities for reconnaissance of land forces abroad,” Zarub. Voen. Oboz. No. 1–2, 17 (2002).
3V. A. Baloev, V. L. Filippov, V. A. Ovsyannikov, I. A. Nepogodin, V. A. Navrazhnykh, and V. S. Yatsyk, “On the development of multispectral optoelectronic reconnaissance systems,” in The Twenty-First All-Russia Interuniversity Scientific–Engineering Conference on Electromechanical and Intracamera Processes in Power Apparatus, Jet Acoustics and Diagnostics, Devices and Methods for Monitoring Natural Media, Substances, Materials, and Items. Abstracts of Reports, Kazan, KVVKU, 2009, pp. 225–227, chap. 2.
4Yu. I. Belousov, “Optical characteristics of the radiation of targets and backgrounds—the physical basis for creating optoelectronic apparatus,” Opt. Zh. No. 10, 88 (2006). [J. Opt. Technol. 73, 734 (2006)].
5S. A. Pokotilo, “Adaptive optoelectronic remote-sensing facilities,” Zarub. Radio´elek. No. 6, 37 (1994).
6V. S. Yatsyk, I. A. Nepogodin, V. V. Lipatov, V. G. Kaplan, V. A. Stepanov, and D. T. Tiranov, “Experimental research of the information content of the radiance and remote-radiance images of objects in the UV and IR regions,” Oboron. Tekh. No. 1–2, 56 (2007).
7L. Novotny and B. Hecht, Principles of Nanooptics (Cambridge Univ. Press, 2006; Fizmatlit, Moscow, 2009).
8P. Andersson, “Long-range three-dimensional imaging using range-dated laser radar images,” Opt. Eng. No. 3, 034301 (2006).
9F. Lapaz and L. Canevet, “Validation of a target acquisition model for active imager using perception experiment,” Proc. SPIE 6737, 67370G (2007).
10R. Espinola, B. Teaney, Q. Nguyen, E. Jacobs, C. Halford, and H. Jofsted, “Active imaging system performance model for target acquisition,” Proc. SPIE 6543, 65430T (2007).
11V. P. Ivanov, V. I. Kurt, V. A. Ovsyannikov, and V. L. Filippov, Modelling and Evaluation of Modern Thermal Viewers (Otechestvo, Kazan, 2006).
12Nuclear Arms Technology, 1990’s (New York, 1988), pp. 149–164.
13L. Ya. Grinchenko, V. P. Ponomarenko, and A. M. Filachev, “Modern status and prospects of IR photoelectronics,” Prikl. Fiz. No. 2, 57 (2009).
14K. Krapels, R. Driggers, B. Jeaney, and C. Halford, “Handheld threat object identification performance of 2-D visible imagery versus 3-D visible imagery,” Opt. Eng. No. 6, 63201 (2006).
15V. G. Volkov, “Night-vision devices for detecting flashing elements,” Spets. Tekhnika No. 2, 3 (2004).
16F. Sadjadi and C. Chun, “Remote sensing using passive IR Stokes parameters,” Opt. Eng. No. 10, 2283 (2004).
17Y. Takiguchi, M. Nakayama, M. Kubota, and J. Yamazaki, “New color TV cameras for UV, near-IR and visible light,” IEEE Trans. 44, 123 (1998).
18V. V. Korolev, I. I. Padusenko, M. V. Tantashev, and V. S. Yatsyk, “Conditions for the remote detection of high-temperature radiation sources in the ultraviolet region,” Opt. Zh. No. 1, 28 (2005). [J. Opt. Technol. 72, 23 (2005)].
19L. Yablonski˘ı, E. Voronin, and V. Kashin, “Foreign military programs for space-based visible reconnaissance,” Zarub. Voen. Oboz. No. 7, 29 (2002).
20R. Richwine, A. Sood, R. Balcerak, and K. Freyvogel, “EO/IR sensor model for evaluating multispectral imaging system performance,” Proc. SPIE 6543, 65430W (2007).
21V. Ivanov, V. Kozlov, and V. Philippov, “Laser spectrofluorescent technology of monitoring of the natural environment,” in SPIE Meetings, Barcelona, Sept. 2003.
22V. K. Kozlov, D. M. Krasil’nikov, V. L. Filippov, and Yu. E. Pol’ski˘ı, “Spectral analyzer and principles of the technique of fluorescence diagnosis of the state of biological tissue and its components,” Zh. Prikl. Spektrosk. No. 1, 21 (1993).
23A. Hodgkin, T. Maurer, C. Halford, and R. Vollmerhausen, “Impact of path radiance on MWIR and LWIR imaging,” Proc. SPIE 6543, 65430O (2007).
24P. Richardson and B. Miller, “Third-generation FLIR simulation at NVESD,” Proc. SPIE 6543, 65430K (2007).
25D. Lange, W. Abrams, M. Iyengar, R. Lane, and A. Defietas, “The Goodrich DB-110 system: multiband operation,” Proc. SPIE 5109, 22 (2003).