УДК: 621.021.2; 662.612.3; 621.454.4
Calculating the spectral density of the radiant intensity of the plumes of solid-fuel rocket engines
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Тиранов А.Д., Филиппов В.Л. Расчет спектральной плотности силы излучения факелов ракетных двигателей на твердом топливе // Оптический журнал. 2012. Т. 79. № 3. С. 77–83.
Tiranov A. D., Filippov V. L. Calculating the spectral density of the radiant intensity of the plumes of solid-fuel rocket engines [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 3. P. 77–83.
A. D. Tiranov and V. L. Filippov, "Calculating the spectral density of the radiant intensity of the plumes of solid-fuel rocket engines," J. Opt. Technol. 79, 184-188 (2012). https://doi.org/10.1364/JOT.79.000184
This paper proposes a model for calculating the characteristics of the radiation of solid-fuel rocket engines (SFREs). The plume of an SFRE is regarded as a gas-dynamic system in which the characteristics of the rocket flight and the distribution profiles of the speed, density, and temperature are linked with the parameters of the gas at the engine’s nozzle section. A basis is provided for the assumptions that have been made to simplify the computational procedure for the plume in its various projections. Calculations of the spatial brightness distributions of the plumes under various conditions showed that the model is adequate when compared with the experimental data.
radiation model, spectral density of radiation force, composite fuel, nozzle
OCIS codes: 120.1880; 260.2160
References:1. J. Rapanotti, B. Gilbert, G. Richer, and R. Stowe, “IR sensor design insight from missile plume prediction models,” Proc. SPIE 4718, 289 (2002).
2. F. Neele and R. Schleijpen, “Electro-optical missile plume detection,” Proc. SPIE 5075, 270 (2003).
3. M. J. Hemsch and J. K. Nilsen, Tactical Missile Aerodynamics (Progress in Astronautics and Aeronautics) (American Institute of Aeronautics and Astronautics, Washington, 1986; Mir, Moscow, 1989).
4. B. Lyons, J. Wormhoudt, and E. Kolb, “Calculation of visible radiation from missile plumes,” AIAA 81, 1111 (1981).
5. O. A. Alekseev, Sh. Sh. Valeev, A. A. Polikarpov, A. D. Tiranov, and V. L. Filippov, “Technique for calculating the radiation of the plume of a solid-fuel rocket engine,” Oboron. Tekhnika No. 6/7, 13 (2010).
6. A. G. Shipunov and E. N. Semashkin, Optical Communication Lines of Compact Guided Missiles under Conditions of the Action of the Noise of the Propulsion Apparatus (NTTs Informtekhnika, Moscow, 2000).
7. O. A. Alekseev, “A mathematical model of the spectral density of the radiation force of flames formed in the steady-state regime of fuel combustion,” Opt. Zh. 65, No. 1, 51 (1998). [J. Opt. Technol. 65, 43 (1998)].
8. M. V. Tantashev, N. Yu. Trukhina, and V. L. Filippov, “Optical models of the atmosphere. Analysis and development paths,” Oboron. Tekhnika No. 6/7, 3 (2010).
9. L. S. Rothman, “The HITRAN 2008 molecular spectroscopic database,” J. Quant. Spectrosc. Rad. Transfer 110, 533 (2009).
10. S. Guobiao, Z. Dingqiang, and Z. Xiaoying, “Numerical simulation of the infrared radiative signatures of liquid and solid rocket plumes,” Aerosp. Sci. Technol. 11, 473 (2007).