УДК: 533.9.07 533.95 535.012
Diagnostic complex for the modelling and experimental investigation of the spectral and gas-dynamic characteristics of an inductively coupled plasma
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Нагулин К.Ю., Ибрагимов Р.И., Цивильский И.В., Гильмутдинов А.Х. Диагностический комплекс для моделирования и экспериментального исследования спектральных и газодинамических характеристик индуктивно-связанной плазмы // Оптический журнал. 2012. Т. 79. № 4. С. 33-41.
Nagulin K. Yu., Ibragimov R. I., Zivilskii I. V., Gilmutdinov A. Kh. Diagnostic complex for the modelling and experimental investigation of the spectral and gas-dynamic characteristics of an inductively coupled plasma [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 4. P. 33-41.
K. Yu. Nagulin, R. I. Ibragimov, I. V. Zivilskii, and A. Kh. Gilmutdinov, "Diagnostic complex for the modelling and experimental investigation of the spectral and gas-dynamic characteristics of an inductively coupled plasma," Journal of Optical Technology. 79(4), 220-225 (2012). https://doi.org/10.1364/JOT.79.000220
A diagnostic complex has been developed for the modelling and experimental investigation of the gas-dynamic and spectral characteristics of an inductively coupled plasma. This complex includes a four-dimensional computer model of plasma, a research plasma generator, a schlieren system for visualizing the spatial structure of gas flows in the torch, and a high-resolution spectrometer for obtaining information on the temperature in the discharge zone from the intensity of the emission spectra. The model adequately maps the gas-flow dynamics in the torch with no discharge ignited in the inductively coupled plasma. The results of the calculations agree well with the experimental data.
inductively coupled plasma, computational gas dynamics, emission spectroscopy, optical schlieren method
OCIS codes: 350.5400 000.4430 300.6210
References:1. M. I. Boulos, “The inductively coupled radio frequency plasma,” Pure Appl. Chem. 57, 1321 (1985).
2. P. Yang and R. M. Barnes, “Plasma modeling and computer simulation of spectrochemical ICP discharges,” Spectrochim. Acta Rev. 13, 275 (1990).
3. J. Mostaghimi and M. I. Bulous, “Mathematical modeling of the ICPs,” in Inductively Coupled Plasmas in Analytical Atomic Spectrometry (John
Wiley & Sons, New York, 1998), pp. 949–983.
4. J. W. McKelliget and N. El-Kaddah, “The effect of coil design on materials synthesis in an inductively coupled torch,” J. Appl. Phys. 64, 2948 (1998).
5. D. C. Schram, J. A. Van der Mullen, J. M. de Regt, and D. A. Benoy, “Fundamental description of spectrochemical ICP discharges,” J. Anal. At.
Spectrom. 11, 623 (1996).
6. R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom.
3, 849 (1988).
7. R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled
plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
8. L. A. Iacone, W. R. L. Masamba, S. H. Nam, H. Zhang, M. G. Minnich, A. Okino, and A. Montaser, “Formation and fundamental characteristics
of novel free-running helium inductively coupled plasmas,” J. Anal. At. Spectrom. 15, 491 (2000).
9. D. Bernardi, V. Colombo, G. G. M. Coppa, and A. D’Angola, “Simulation of the ignition transient in RF inductively coupled plasma torches,” Eur.
Phys. J. D14, 337 (2001).
10. G. Dunn and T. W. Eagar, “Metal vapors in gas tungsten arcs: Part II. Theoretical calculations of transport properties,” Metall. Trans. A 17, 1865
(1986).
11. A. Montaser and D. W. Golightly, eds., Inductively Coupled Plasmas in Analytical Atomic Spectrometry (VCH Publishers, Chichester, 1992), p.
195.
12. V. S. Klubnikin, “Thermal and gas-dynamic characteristics of an induction discharge in an argon flux,” Teplofiz. Vys. Temp. 13, 473 (1975).
13. I. Dundr and Ya. Kuchera, “Hydrodynamic structure of a turbulent plasma jet,” in Properties of a Low-Temperature Plasma and Methods of
Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 244–257.
14. Yu. N. Dubnishchev, V. A. Arbuzov, P. P. Belousov, and P. Ya. Belousov, Optical Methods of Studying Flows (Sib. Univ. Izd, Novosibirsk, 2003).
15. L. A. Vasil’ev, Schlieren Methods (Nauka, Moscow, 1968).
16. G. I. Mishin, Optical Methods of Studies in a Ballistic Experiment (Nauka, Leningrad, 1979), p. 11.
17. A. F. Belozerov, Optical Methods of Visualizing Gas Flows (Izd. Kazan. Gos. Tekhn. Univ., Kazan, 2007), p. 615.
18. A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Nauka, Novosibirsk, 1977), pp. 216–229