УДК: 533.9.07 533.95 535.012
Space–time structure of gas flows and temperature fields in an inductively coupled plasma
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Нагулин К.Ю., Ибрагимов Р.И., Цивильский И.В., Гильмутдинов А.Х. Пространственно-временная структура газовых потоков и температурных полей в индуктивно-связанной плазме // Оптический журнал. 2012. Т. 79. № 4. С. 42–49.
Nagulin K. Yu., Ibragimov R. I., Zivilskii I. V., Gilmutdinov A. Kh. Space–time structure of gas flows and temperature fields in an inductively coupled plasma [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 4. P. 42–49.
K. Yu. Nagulin, R. I. Ibragimov, I. V. Zivilskii, and A. Kh. Gilmutdinov, "Space–time structure of gas flows and temperature fields in an inductively coupled plasma," Journal of Optical Technology. 79(4), 226-231 (2012). https://doi.org/10.1364/JOT.79.000226
The key gas-dynamic characteristics of an inductively coupled plasma have been modelled and experimentally certified, using an original diagnostic complex. The processes of ignition and steady-state burning of the plasma are considered. Such effects as the formation of plasma clusters, plasma pulsations, and rotation of the plasma jet are detected, experimentally confirmed, and interpreted. The results of the model calculations agree well with the resulting experimental data of schlieren measurements.
inductively coupled plasma, computational gas dynamics, toroidal vortices, optical schlieren method
OCIS codes: 350.5400, 000.4430, 300.6210
References:2. A. Gilmutdinov, R. Ibragimov, L. Makarov, K. Nagulin, and M. Salakhov, “Towards a virtual torch: complete modeling of an induction-coupled plasma,” in Book of Abstracts of Fourth Nordic Conference on Plasma Spectrochemistry, Loen, Norway, 2008, p. 17.
3. K. Yu. Nagulin, R. I. Ibragimov, I. V. Zivilskii, and A. Kh. Gilmutdinov, “Diagnostic complex for modelling and experimental investigation of the spectral and gas-dynamic characteristics of an inductively coupled plasma,” Opt. Zh. 79, No. 4, 33 (2012). [J. Opt. Technol. 79, (2012)].
4. A. Montaser and D. W. Golightly, Inductively Coupled Plasmas in Analytical Atomic Spectrometry, A. Montaser and D. W. Golightly, eds. (VCH Publishers, Chichester, 1992), p. 195.
5. R. K. Winge, D. E. Eckels, E. L. DeKalb, and V. A. Fassel, “Spatiotemporal characteristics of the inductively coupled plasma,” J. Anal. At. Spectrom. 3, 849 (1988).
6. R. K. Winge, J. S. Crain, and R. S. Houk, “High-speed photographic study of plasma fluctuations and intact aerosol particles in inductively coupled plasma mass spectrometry,” J. Anal. At. Spectrom. 6, 601 (1991).
7. A. P. Burmakov and A. G. Shashkov, “Interference–holographic study of nonsteady-state and turbulence of a plasma jet,” in Properties of a Low-Temperature Plasma and Methods of Diagnosing It, M. F. Zhukov, ed. (Sib. Sect. Nauka, Novosibirsk, 1977), pp. 216–229.
8. U. Yusupaliev, P. U. Yusupaliev, and S. A. Shuteev, “Pulsed axisymmetric ejection of a dense plasma into a gas. 2. Conditions for the formation and stability of a plasma toroidal vortex,” Zh. Tekh. Fiz. 77, No. 7, 50 (2007). [Tech. Phys. 52, 872 (2007)].