УДК: 535.417.2; 535.44
Obtaining terahertz-range metamaterials by laser engraving
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Назаров М.М., Баля В.К., Рябов А.Ю., Денисюк И.Ю., Шкуринов А.П. Получение метаматериалов терагерцового диапазона методом лазерной гравировки // Оптический журнал. 2012. Т. 79. № 4. С. 77–84.
Nazarov M. M., Balya V. K., Denisyuk I. Yu., Ryabov A. Yu., Shkurinov A. P. Obtaining terahertz-range metamaterials by laser engraving [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 4. P. 77–84.
M. M. Nazarov, V. K. Balya, I. Yu. Denisyuk, A. Yu. Ryabov, and A. P. Shkurinov, "Obtaining terahertz-range metamaterials by laser engraving," Journal of Optical Technology. 79(4), 251-256 (2012). https://doi.org/10.1364/JOT.79.000251
This paper discusses the results of forming lattices of resonance and polarizing planar elements—metamaterials that serve the function of band-pass filters and polarizers of the terahertz range of wavelengths, made by the direct laser engraving of a metallized polymeric film. The excitation of a surface plasmon in a perforated metallic layer is investigated. Methods of calculating such structures are considered, the results of their experimental formation are presented, and the results of calculation and experiment are compared.
metamaterial, plasmon, laser engraving, ablation, terahertz radiation, bandpass filter, polarizer, millimeter waves
OCIS codes: 230.4555, 250.5403
References:1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184 (2000).
2. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and μ,” Usp. Fiz. Nauk 92, 517 (1967). [Sov. Phys. Usp. 10, 509 (1968)].
3. V. G. Veselago, “Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium,” Usp. Fiz. Nauk 179, 689 (2009). [Phys.–Usp. 52, 649 (2009)].
4. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, No. 5685, 788 (2004).
5. D. W. Porterfield, J. L. Hesler, R. Densing, E. R. Mueller, T. W. Crowe, and R. M. Weikle, “Resonant metal-mesh bandpass filters for the far infrared,” Appl. Opt. 33, 6052 (1994).
6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, No. 6668, 667 (1998).
7. S. Wang, F. Garet, K. Blary, E. Lheurette, J.-L. Coutaz, and D. Lippens, “Experimental verification of negative refraction for a wedge-type negative-index metamaterial operating at terahertz,” Appl. Phys. Lett. 97, 181902 (2010).
8. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative-index materials,” J. Phys.: Condens. Matter. 20, 304217 (2008).
9. X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, New York, 2010).
10. M. M. Nazarov, A. P. Shkurinov, E. A. Kuleshov, and V. V. Tuchin, “Terahertz time-domain spectroscopy of biological tissues,” Kvant. Elektron. (Moscow) 38, 647 (2008). [Quantum Electron. 38, 647 (2008)].
11. M. M. Nazarov, A. P. Shkurinov, A. A. Angeluts, and D. A. Sapozhnikov, “Selecting nonlinear optical and semiconductor converters of a femtosecond laser radiation pulse to the terahertz range,” Izv. Vyssh. Uchebn. Zaved. Radiofiz. 52, 595 (2009).
12. M. Nazarov, F. Garet, D. Armand, A. Shkurinov, and J.-L. Coutaz, “Surface plasmon THz waves on gratings,” C. R. Phys. 9, 232 (2008).
13. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896 (2004).
14. A. Agrawal, V. Z. Valy, and A. Nahata, “Engineering the dielectric function of plasmonic lattices,” Opt. Express 16, 9601 (2008).
15. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, “Terahertz electromagnetic wave transmission through random arrays of single rectangular holes and slits in thin metallic sheets,” Phys. Rev. Lett. 99, 137401 (2007).
16. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, No. 5685, 847 (2004).
17. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves (Nauka, Moscow, 1979), p. 312.
18. J.-B. Masson, A. Podzorov, and G. Gallo, “Extended Fano model of extraordinary electromagnetic transmission through subwavelength hole arrays in the terahertz domain,” Opt. Express 17, 15280 (2009).
19. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Pergamon Press, Oxford, 1965; Nauka, Moscow, 1976), p. 583.