УДК: 533.9: 546.295
Amplifying the VUV radiation of atomic nitrogen in helium, argon, krypton, and xenon
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Герасимов Г.Н., Крылов Б.Е., Hallin R., Arnesen A., Стаселько Д.И., Алексеев И.В. Усиление вакуумного ультрафиолетового излучения атомарного азота в гелии, аргоне, криптоне и ксеноне // Оптический журнал. 2012. Т. 79. № 8. С. 24–34.
Gerasimov G.N., Hallin R., Arnesen A., Krylov B.E., Stasel’ko D. I., Alekseev I.V. Amplifying the VUV radiation of atomic nitrogen in helium, argon, krypton, and xenon [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 8. P. 24–34.
G. N. Gerasimov, R. Hallin, A. Arnesen, B. E. Krylov, D. I. Stasel’ko, and I. V. Alekseev, "Amplifying the VUV radiation of atomic nitrogen in helium, argon, krypton, and xenon," Journal of Optical Technology. 79(8), 462-469 (2012). https://doi.org/10.1364/JOT.79.000462
This paper discusses the spectral features of the amplification of narrow-band radiation of atomic nitrogen in the excimeric media of inert gases, including helium, argon, krypton, and xenon. Appreciable short-wavelength shifts (up to 0.026 nm) are detected in the spectra of the amplified radiation relative to the atomic emission lines of nitrogen that initiate this radiation. The observed shifts exceeded the instrumental resolution of the spectrometer that we used, were determined by the composition of the amplifying medium, and were independent of its excitation parameters under the experimental conditions. An explanation of the observed effect is proposed.
excimer molecules, forced radiation, Frank-Condon principle, Heisenberg uncertainty principle, quantum transition time
OCIS codes: 260.0260, 270.0270, 330.0330
References:1. D. A. G. Deacon, L. R. Elias, J. M. J. Madey, G. J. Ramian, H. A. Schwettman, and T. I. Smith, “First operation of a free-electron laser,” Phys. Rev. Lett. 38, 892 (1977).
2. G. N. Makarov, “The spectroscopy of clusters by intense pulses of VUV radiation from free-electron lasers,” Usp. Fiz. Nauk 179, 487 (2009). [Phys. Usp. 52, 461 (2009)].
3. F. G. Houtermans, “ ¨Uber Massen-Wirkung im optischen Spektralgebiet und die M¨oglichkeit absolut negativ Absorption f¨ur einige F¨alle von Molek¨ulspektren (Licht-Lawine),” Helv. Phys. Acta 33, 933 (1960).
4. N. G. Basov, V. A. Danilychev, Yu. M. Popov, and D. D. Khodkevich, “Quantum generator in the vacuum region of the spectrum when liquid xenon is excited by electron beam,” Pis’ma Zh. Eksp. Teor. Fiz. 12, 473 (1970). [JETP Lett. 12, 329 (1970)].
5. I. N. Knyazev and V. S. Letokhov, Gas Lasers in the UV and VUV Spectral Regions: Handbook on Lasers (Izd. Sov. Radio, 1978), Vol. 1, pp. 197–220.
6. G. Gerasimov, “Excimer media gain,” Spectrosc. Lett. 34, 191 (2001).
7. G. N. Gerasimov, B. E. Krylov, R. Hallin, A. O. Morozov, A. Arnesen, and F. Heijkenskjold, “Stimulated emission of inert gas mixtures in the VUV range,” Opt. Spektrosk. 92, 327 (2002). [Opt. Spectrosc. 92, 290 (2002)].
8. G. N. Gerasimov, B. E. Krylov, R. Hallin, and A. Arnesen, “Parameters of VUV radiation from a DC capillary discharge in a mixture of krypton with xenon,” Opt. Spektrosk. 100, 904 (2006). [Opt. Spectrosc. 100, 825 (2006)].
9. I. J. Bigio and M. Slatkine, “Attainment of the theoretical minimum input power for injection locking of an unstable-resonator Kr–F laser,” Opt. Lett. 7, No. 6, 336 (1981).
10. N. P. Barnes and J. C. Barnes, “Injection seeding 1: theory,” IEEE J. Quantum Electron. 29, 2670 (1993).
11. E. U. Rafailov, D. J. L. Birkin, W. Sibbett, and E. A. Avrutin, “Nonresonant self-injection seeding of a gain-switched diode laser,” IEEE J. Sel. Top. Quantum Electron. 7, 287 (2001).
12. S. A. Magnitskii, V. I. Malachova, A. P. Tarasevich, V. G. Tunkin, and S. D. Yakubovich, “Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators,” Opt. Lett. 11, 18 (1986).
13. A. R. Striganov and N. S. Sventitski˘ı, Tables of the Spectral Lines of Neutral and Ionized Atoms (Atomizdat, Moscow, 1966).
14. G. N. Zvereva, “Investigation and optimization of VUV sources based on inert-gas plasmas,” in Author’s Abstract of Dissertation for Doctor of Physicomathematical Sciences (Izd. LEMA, St. Petersburg, 2010).
15. T. Eftimiopoulos, B. P. Stoicheff, and R. I. Thompson, “Efficient population inversion in excimer states by supersonic expansion of discharge plasmas,” Opt. Lett. 14, 624 (1989).
16. N. S. Krylov and V. A. Fok, “On the two main interpretations of the energy–time uncertainty relationship,” Zh. Eksp. Teor. Fiz. 17, 93 (1947).
17. O. Svelto, Principles of Lasers (Plenum Press, New York, 1995).
18. S. ´E. Frish, Optical Spectra of Atoms (Fiz. Mat. Giz, Moscow, 1963).
19. B. M. Smirnov and A. S. Yatsenko, Dimers (Nauka, Novosibirsk, 1997).
20. P. E. Siska, J. M. Parson, T. P. Schafer, and Y. T. Lee, “Intermolecular potentials from crossed beam differential elastic scattering measurements. III. He+He and Ne+Ne,” J. Chem. Phys. 55, 5762 (1971).
21. S. L. Guberman and W. A. Goddard, “Nature of excited states of He2,” Phys. Rev. A 12, 1203 (1975).
22. J. M. Parson, P. E. Siska, and Y. T. Lee, “Intermolecular potentials from crossed-beam differential elastic scattering measurements. IV. Ar + Ar,” J. Chem. Phys. 56, 1511 (1972).
23. K. K. Docken and T. P. Schafer, “Spectroscopic information on ground-state Ar2, Kr2, and Xe2 from interatomic potentials,” J. Mol. Spectrosc. 16, 454 (1973).
24. Y. Tanaka and K. Yoshino, “Absorption spectrum of the He2 molecule in the 510–611- ˚A range,” J. Chem. Phys. 50, 3087 (1969).
25. J. D. Macomber, The Dynamics of Spectroscopic Transitions: Illustrated by Magnetic Resonance and Laser Effects (Wiley, New York, 1976; Mir, Moscow, 1976).
26. V. A. Fok, Principles of Quantum Mechanics (Nauka, Moscow, 1976).