УДК: 535-31; 621.384.4
Using vacuum ultraviolet radiation to obtain highly reactive radicals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Зверева Г.Н. Использование вакуумного ультрафиолетового излучения для получения высокореактивных радикалов // Оптический журнал. 2012. Т. 79. № 8. С. 45–54.
Zvereva G.N. Using vacuum ultraviolet radiation to obtain highly reactive radicals [in Russian] // Opticheskii Zhurnal. 2012. V. 79. № 8. P. 45–54.
G. N. Zvereva, "Using vacuum ultraviolet radiation to obtain highly reactive radicals," Journal of Optical Technology. 79(8), 477-483 (2012). https://doi.org/10.1364/JOT.79.000477
It is shown by calculation that highly reactive radicals can be generated by the photolysis of water molecules with vacuum ultraviolet radiation. The concentrations of the degradation products of water are calculated, and it is numerically shown that the aromatic chlorine-containing compounds found in liquid and gaseous media can be broken down by the products of the VUV photolysis of water molecules. It is numerically demonstrated that the products of the VUV photolysis of water molecules can be used for biological purposes.
vacuum ultraviolet radiation, excimer lamps, radicals OH
OCIS codes: 260.5130, 260.7210
References:1. Y. Morimoto, T. Sumitomo, M. Yoshioka, and T. Takemura, “Recent progress on UV lamps for industries,” in Proceedings of the IAS (IEEE Industry Application Society, 2004), pp. 24–31.
2. Th. Oppenlander, Photochemical Purification of Water and Air (Wiley- VCH, Weinheim, 2003).
3. L. K. Wang, Y.-T. Hung, and N. K. Shammas, eds., Handbook of Environmental Engineering (Human Press, New York, 2006).
4. O. Kirino and T. Enomoto, “Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light,” Precis. Eng. 35, 669 (2011).
5. K. D. Weltmann, E. Kindel, T. Woedtke, M. H¨ahnel, M. Stieber, and R. Brandenburg, “Atmospheric-pressure plasma sources: Prospective tools for plasma medicine,” Pure Appl. Chem. 82, 1223 (2010).
6. S. Kalghatgi, C. M. Kelly, E. Cerchar, B. Torabi, O. Alekseev, A. Fridman, G. Friedman, and J. Azizkhan-Clifford, “Effects of non-thermal plasma on mammalian cells,” PLoS ONE 6, 1 (2011).
7. G. Heit, A. Neuner, P.-Y. Saugy, and A. M. Braun, “Vacuum-UV actinometry. The quantum yield of the photolysis of water,” J. Chem. Phys. A 102, 5551 (1998).
8. A. K. Pikaev and S. A. Kabakchi, Reactivity of the Primary Products of the Radiolysis of Water ( ´Energoizdat, Moscow, 1982).
9. J. L. Weeks, G. M. A. C. Meaburn, and S. Gordon, “Absorption coefficient of liquid water and aqueous solutions in the far ultraviolet,” Radiat. Res. 19, 559 (1963).
10. R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. H. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe, “Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species,” Atmos. Chem. Phys. 4, 1461 (2004).
11. P. Wardman, “Reduction potentials of one-electron couples involving free radicals an aqueous solutions,” J. Phys. Chem. Ref. Data 18, 1637 (1989).
12. N. A. Aristova and I. M. Piskarev, “Water purification in large water bodies using chain reactions initiated by hydroxyl radicals,” Sovrem. Naukoemk. Tekh. No. 2, 42 (2008).
13. B. R. Locke, “Electrical discharge with water spray,” in Proceedings of the Fourth International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA 2009), Ghent, Belgium, 2009, pp. 62–65.
14. T. Maehara, S. Nimura, and H. Toyota, “Radio-frequency plasmas in water,” in Abstracts of the Eighteenth Topical Conference on Radio-Frequency Power in Plasmas, Ghent, Belgium, 2009, p. 13.
15. Handbook on Advanced Photochemical Oxidation Processes (EPA/625/R- 98/004, 1998), p. 97.
16. N. Gettoff, “Purification of drinking water by irradiation. A review,” Proc. Indian Acad. Sci., Chem/Sci. 105, 373 (1993).
17. G. Heit and A. M. Braun, “VUV-photolysis of aqueous systems: spatial differentiation between volumes of primary and secondary reactions,” Water Sci. Technol. 35, No. 4, 25 (1997).
18. G. A. Loraine and W. H. Glaze, “Destruction of vapor-phase halogenated methanes by means of ultraviolet photolysis,” in Forty-seventh Purdue Industrial Waste Conference Proceedings (Lewis Publishers, Chelsea, 1992), pp. 309–316.
19. A. Afzal, Th. Oppenlander, J. R. Bolton, and M. G. El-Din, “Anatoxin-a degradation by advanced oxidation processes: Vacuum-UV at 172 nm, photolysis using medium-pressure UV and UV/H2O2,” Water Res. 30, 1 (2009).
20. G. V. Buxton, C. L. Greenstock, W. P. Helman, and A. B. Ross, “Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution,” J. Phys. Chem. Ref. Data 17, 513 (1988).
21. B. H. J. Bielski, D. E. Cabelli, and R. L. Arudi, “Reactivity of HO2/O−2 radicals in aqueous solution,” J. Phys. Chem. Ref. Data 14, 1041 (1985).
22. V. L. Bugaenko and V. M. Byakov, “Quantitative model of the radiolysis of liquid water and dilute solutions of hydrogen, oxygen, and hydrogen peroxide. I. Formulation of the model,” Khimiya Vysokikh ´Energi˘ı 32, 407 (1998).
23. G. N. Zvereva, “Investigation of water decomposition by vacuum ultraviolet radiation,” Opt. Spektrosk. 108, 963 (2010). [Opt. Spectrosc. 108, 915 (2010)].
24. I. M. Piskarev, “Model of reactions accompanying a corona discharge in the O2(g)–H2O system,” Zh. Fiz. Khim. 74, 546 (2000).
25. K. Watanabe and M. Zelikoff, “Absorption coefficient of water vapor in the vacuum ultraviolet,” J. Opt. Soc. Am. 43, 753 (1953).
26. K. Watanabe, E. C. Y. Inn, and M. Zelikoff, “Absorption coefficients of oxygen in the vacuum ultraviolet,” Chem. Phys. No. 6, 1026 (1953).
27. M. Mandalakis, H. Berresheim, and E. G. Stephanou, “Direct evidence for destruction of polychlorobiphenyls by OH radicals in the subtropical troposphere,” Environ. Sci. Technol. 37, 542 (2003).
28. P. N. Anderson and R. A. Hites, “OH radical reactions: The major removal pathway for polychlorinated biphenyls from the atmosphere,” Environ. Sci. Technol. 30, 1756 (1996).
29. K. Sehested and E. J. Hart, “Formation and decay of the biphenyl cation radical in aqueous acidic solution,” J. Phys. Chem. 79, 1639 (1975).
30. M. Daniels and A. Grimison, “Photochemistry of thymine,” Nature 197, 484 (1963).
31. M. Daniels and A. Grimison, “Photolysis of the aqueous thymine system,” Biochim. Biophys. Acta 142, 292 (1967).
32. B. Ohtani, H. Nagasaki, S. Nishimoto, K. Sakano, and T. Kagiya, “Far-ultraviolet-induced decomposition of thymine in deaerated and aerated aqueous solutions,” Can. J. Chem. 64, 2297 (1986).
33. B. Ohtani, H. Nagasaki, K. Sakano, S. Nishimoto, and T. Kagiya, “Photoinduced oxygenation of thymine in an aqueous suspension of titanium dioxide,” J. Photochem. Photobiol. A 41, 141 (1987).
34. S. G. Swarts, M. D. Sevilla, D. Becker, C. J. Tokar, and K. T. Wheeler, “Radiation-induced DNA damage as a function of hydration,” Radiat. Res. 129, 333 (1992).
35. T. Ito, A. Ito, K. Hieda, and K. Kobayashi, “Wavelength dependence of inactivation and membrane damage to Saccharomyces cerevisiae cells by monochromatic synchrotron vacuum-UV radiation (145–190 nm),” Radiat. Res. 96, 532 (1983).
36. R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis: Contributions to the Chemistry of Biology and Medicine (Oxford Press, New York, 1983; Nauka, Moscow, 1987).
37. T. P. Coohill and J. C. Sutherland, “Free-electron laser in ultraviolet photobiology,” J. Opt. Soc. Am. B 6, 1079 (1989).
38. G. Slimi, ed., Radiation Research (1967).